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Dynamic modelling of the flat 2-D crack by
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SUMMARY

We present an efficient numerical method for solving indirect boundary integral equations that describe
the dynamics of a flat two-dimensional (2-D) crack in all modes of fracture. The method is based
on a piecewise-constant interpolation, both in space and time, of the slip-rate function, by which the
original equation is reduced to a discrete convolution, in space and time, of the slip-rate and a set
of analytically obtained coefficients. If the time-step interval is set sufficiently small with respect to
the spatial grid size, the discrete equations decouple and can be solved explicitly. This semi-analytic
scheme can be extended to the calculation of the wave field off the crack plane. A necessary condition
for the numerical stability of this scheme is investigated by way of an exhaustive set of trial runs
for a kinematic problem. For the case investigated, our scheme is very stable for a fairly wide range
of control parameters in modes III and I, whereas, in mode II, it is unstable except for some limited
ranges of the parameters. The use of Peirce and Siebrits’ e-scheme in time collocation is found helpful
in stabilizing the numerical calculation. Our scheme also allows for variable time steps. Copyright ©
2001 John Wiley & Sons, Ltd. '
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1. INTRODUCTION

The boundary integral equation method (BIEM) has been extensively applied to various classes
of dynamic crack-analysis problems [1]. According to the displacement discontinuity method
using the indirect formulation, the traction on the crack surface is expressed as a convolution,
in time and space, of the slip along the crack and a set of integration kernels. In the most
straightforward form, these boundary integral equations (BIEs) are hypersingular and are not
immediately amenable to numerical implementation. One of the most popular and successful
methods to circumvent the hypersingularities is the approach of regularization, by which the
integrals are rewritten, most often through integration by parts, in an equivalent form which
involves only weakly singular integrals, at least integrable in the sense of Cauchy principal
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228 T. TADA AND R. MADARIAGA

values. Although the formulation is possible both in the time domain and the frequency do-
main, the time-domain representation is preferable because it can deal not only with stationary
but also with transient crack-analysis problems.

In conceptual terms, a time-domain formulation for the general non-planar three-dimensional
(3-D) crack problem was first derived by Zhang [2], but it was not evident how it could
be implemented to complicated problems. Theories more amenable to practical modelling
were slower to appear. More recent modelling works, based on the displacement discon-
tinuity method, the regularization technique and the time-domain representation, dealt with
the flat two-dimensional (2-D) anti-plane crack [3, 4], flat 3-D crack [5-7], non-planar 2-
D anti-plane and/or in-plane cracks [8—13], and the non-planar 3-D crack [14-16]. Mean-
while, an alternative formulation, based on a Fourier transform in space, was also developed
[17-19].

While most of these works dealt with the behaviour of cracks placed in an infinite medium,
Seelig and Gross [13] used a direct formulation so as to allow for cracks in finite media.
They presented a set of advanced numerical simulations [12, 13], with rich implications for
the interpretation of experimentally observed fracture phenomena [20].

The regularized BIEs, thus derived, may be reduced, by discretization, to a set of simul-
taneous linear algebraic equations, which have to be solved in a time-marching manner. The
slip and traction profiles on the crack should then be approximated by linear combinations
of a set of shape functions. If the crack is flat and if a temporally and spatially piecewise-
constant approximation is used for the slip-rate function, the convolution coefficients in the
discrete equations reduce to simple analytic forms [2, 3, 7, 15, 16]. If the discrete time-step
interval is sufficiently small with respect to the spatial grid size, the simultaneous equations
decouple and can be solved at each time step explicitly by simple summation [11, 21-23]
further simplifying the computational scheme.

While this semi-analytic convolution method has already been elaborated for the flat 2-D
anti-plane crack and the flat 3-D crack in previous works, in the present article we extend
the theory to the flat 2-D in-plane crack. We also demonstrate that the same approach may
be applied to the calculation of the wave field off the crack plane. We then investigate a
necessary condition for the numerical stability of our time-marching BIEM scheme, both for
2-D anti-plane and in-plane motions, by an exhaustive set of experimental runs with differ-
ent sets of control parameters. We also demonstrate that Peirce and Siebrits’ e-scheme [22]
for time collocation enhances the stability of our numerical method under certain circum-
stances.

2. DEFINITION OF THE PROBLEM AND NOTATIONS

We assume that the medium is infinite, homogeneous and isotropic, and that the problem is
independent of the x;-axis; the crack, which is flat, lies on the x;-axis. The slip components
in the x;-, x;- and x3-direction therefore correspond, respectively, to the in-plane shear mode
(mode 1I), the opening mode (mode 1), and the anti-plane shear mode (mode III).

In the present paper, u,(x,¢) is the displacement in the ith direction at position X and time
t, 0(x,t) the ij-component of the stress, I' the crack surface, £ or s the length co-ordinate
along I, Aw;(&,7) the slip (or displacement discontinuity) on the crack in the ith direction
at location ¢ and time t, Ti(s,t) the traction along the crack surface in the ith direction

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:227-251



DYNAMIC MODELLING OF THE FLAT 2-D CRACK 229

defined by
Ti(s, 1) = oy(s, t)n;(s) (1)

where n(s) is a unit vector normal to the crack surface, ¢; and c¢r the P- and S-wave velocity,
respectively, p the rigidity, a dot over a variable the derivative with time, H(-) the Heaviside
step function, and

P =cric (2)

The variable ¢ or s, denoting the length co-ordinate along the crack, is taken equal to x;.
Greek subscripts stand for either 1 or 2. Summation over repeated indices is implied, wherever

necessary.

The crack is supposed to lie initially in a uniform stress field ¢, while the traction F(s)
on the crack surface is defined by a separate boundary condition. For convenience, we take
the stress at infinity as the zero reference state. This makes the problem equivalent to loading
the crack, placed in a stress field that vanishes at infinity, with traction 7 =F — ¢,

3. BOUNDARY INTEGRAL EQUATIONS

3.1. Anti-plane crack

The BIE that defines the relation between the traction and slip on the surface of a flat 2-D
anti-plane crack is [3]:

K 1 : B o t—t o Is=¢
Bon=—4 [oety [ argpinn gt (- £2E)

_ B ey I ~ _|s—£|>
€1 /Pdﬂff_m dzé‘ram(éﬂ)\/(t—t)l—((s—f)/cT)?-H(f T
(3)

We apply a temporally and spatially piecewise-constant interpolation to the slip rate
[3, 7, 10, 15, 16]:

Atis(s,t) = kZ:Dé"'"d’“"(s, ) 4

d*"(s,t)= [H(s —si + 3As) —H (s —s¢ — 3As)] - [H (1 = £57°) — H (1 — t,"8)]  (5)

i —F Y T o TR AT S X | (6)

The spatial grid size As is taken to be uniform all over the fault, in order to assure space-
translation invariance of the discrete formulation. The time-step interval At,, is usually taken
to be constant also for the sake of time-translation invariance, but in the present study, we
leave room for variable time-step intervals. The parameter e, stands for the relative height
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of the time collocation point #, within the time-step interval At,, e, =1 if variables are
collocated at the end of the interval and e, = 0.5 if they are collocated at the midpoint. Some
authors [2, 5, 11-13], who employed the same interpolation method, used special square-root-
type shape functions for the crack-end elements, which we did not. The discretization reduces
the original integral equation to

TV = Ty(sntn) = — 50— L. D" K35 )
€Tk

, 1M

with [3]

K-;—Tlgnm =l ((z ~ Jet %) 258, B Ii:lort) —Lurs ((; — k= %) As, t, — I:;hcm)
Ly ((i—k+ %) As, ity — frlfng) + .13 ((l —k—3)As,ty — tl'?ng) ()
_er P _ sl 1
Lors(s,t) = TESH(I)/D drmﬂ (T CT) + mTH(I)
s 1 lél)
df—H|t— =
< ey -

=H(s)H(t) + ;1'_: sgn(s)H (t — lcS_|> { (crtfs) — 1 — Arccosﬂ 9)

T crt

Cochard and Madariaga [3, Equation (8)] derived an alternative equation to Equation (3),
in which the radiation damping term —(u/(2cr))Aus(s,t) was isolated from the rest of the
equation. However, the use of their alternative formula results in a discrete equation with the
same coefficients (9).

3.2. In-plane crack

The BIEs for the tangential and normal tractions on the in-plane crack are given by [10]

2 1 ! € .
Tl(S,f):——nEC%fr dém[ dTaféAM](éﬁT)

N R I GRE 4}

N Gy (V0 (B M)]

T
f
_H 9 i
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X\/(Tw)Z—((we)/cT)zH(’ i ) (o
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2 1 ‘ 0
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With the piecewise-constant interpolation of the slip-rate

An(s,t) =3 DE"dRm(s, 1)
km

Ady(s, 1) =3 DE™d5"(s,1)
k,m

they reduce to

in U m pri—k,n,m
Tl’ = Tl(Siatn): - _ZC‘T;C{SDT K]:T]'i’
,m
T;"n TZ(Sz:f )__4._2 Tk,Z;kaKé_knm

with
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and likewise for Ky.po, and
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(11)

(12)

(13)

(14)

(15)

(16)
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1 1 Is| 4 5 2 3/2 2
Lira(s,t) = EH(S)H(I) + Esgn(s)H l'— ) —37 [(CLt/S) - 17" +4p(1 - p*)

x v/ (ertfs) —1— %AICCOS(%} + %sgn(s)H (r — %l) ;—1 [(cTt/s)2 _ 1]3/2
(18)

3.3. Friction laws

In order to solve Equations (7), (14) or (15), we have to combine them with a boundary
condition, in the form of a friction law, that defines the relation between the traction T
and the slip-rate Au (or D) on the crack surface. A simplest example is the friction-free
condition

T+0_ext:0 (19)

where the external stress ¢ has been subtracted from our definition of the traction T so that
the latter may equal zero at infinity.

Alternatively, it is possible to employ other types of friction laws, including the triangular
slip-weakening law [24]

oo(1 — Au/Dy) (0<Au<Dy)

T = (20)
0 (Do<An)

which will be used later in our article. The specific form of Equation (20) has the advantage
of allowing the slip-rate D to be solved for explicitly in an analytical form.

When modelling spontaneous evolution of the crack, we employed the critical-stress rupture
criterion, according to which the crack tip is made to advance if and only if the traction on
the node next to the crack end has exceeded a certain threshold value. Strictly speaking, this
criterion is dependent on the discretization. When the spatial grid size is fixed, however, the
critical-stress criterion is approximately equivalent to the stress intensity factor-based criterion
that is derived from fracture energy considerations, as long as the rupture speed is not too
large [25]. Otherwise, an energy-based criterion should be used in our numerical method. This
limitation of the critical-stress criterion does not affect the results presented here, however,
since they have to do with the long-term stability behaviour of the BIEM time-marching
scheme.

3.4. Implicit and explicit regimes

In general, the discretized BIE (7), (14) or (15), together with the friction law, must be
solved in an implicit way as a set of simultaneous linear algebraic equations. If the ratio
of the time-step size to the spatial grid size is small enough, however, these simultaneous
equations decouple and reduce to an explicit formulation [11, 21-23]. Let

hTECT AI/AS, hLECL At/AS (21)
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be the Courant—Friedrichs—Lewy (CFL) parameter, and if
ehr<i (22)
in the anti-plane mode, or
eh <l or ehr<p/2 ’ (23)
in the in-plane modes, the elastic field at the collocation point (si,2,) lies outside the cone of
influence (or of causality) of the elastic waves emitted from the neighbouring contemporaneous

blocks collocated at (si+1,%,) and (si—1,1,). This decouples Equations (7), (14) or (15) and
reduces them to

in U i,n ,m pri—kn,m
Ty = o (D3 + 3 D;C Ks:rg ) (24)
T km<n
in M in m pri—kn,
1= (o 3 7RG ' 25)
T km<n
in U 1 in k,m pri—kn,m
7ot =———+ | —D5" + DK 5 26
2 ZCT (p 2 k’mzq 2 T2 ) ( )

This allows the slip-rate D to be solved for explicitly by simple summation. The explicit
formulation was used in a number of earlier publications [3, 4, 7, 16], but the authors were
not clearly aware of the role of the CFL parameter in the BIEM.

3.5. Some technical notes

The spatio-temporal convolution of the form ¥, ,, ., D*™K*~%™™ should better be calculated
by way of Fast Fourier Transform (FFT) in space, because this reduces the computational
costs significantly [4, 26]. However, FFT cannot be applied to the summation in time under
the time-marching scheme.

A remark should also be made on the accuracy of computation for the convolution coeffi-
cients. In the in-plane problem, /.71 and Ly, may become highly inaccurate for crt/s>>1 if
they are calculated according to Equations (17) and (18), because they contain a difference
between two large values. In order to preclude round-off errors, it is advisable, for cpt/s>>1,
to approximate [;.7y and Ir.r; by their asymptotes

2ert
(s, ) =Bi(s,)=""=(1—-p") @7

since the convergence to these asymptotes is fairly rapid. Although the inaccuracy problem is
not evident in the anti-plane mode, a similar approximation is possible if we replace I.r3 by
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its asymptote
st crt
! = — 28
373(851) - (28)

for crtfs> 1.

4. OFF-FAULT ELASTIC FIELD

The same discretization can be adapted to the off-fault stress and displacement field. If we
discretize Tada and Yamashita’s [10] Equations (B1), (B2), (B8) and (B9), adapted to the
special case of a flat crack, with the piecewise-constant interpolations (4), (12) and (13) of
the slip-rate, we obtain

i P H L j ko,
o = 05l 5o tn) = g DK (29)
m
,’ .’ _ z : 'u k, .’ ., }C, ; k, .’ ., k, 3
T = 0ap(x), x5, 1n) = 7—26”2 {Dl i i Y o ”‘] (30)
,m
s = s 5 1) = 0 DA e
k,m
u = gl ) =1 [DYKESE™ + DRI (32)
k,m

where the convolution coefficients are given in the appendix.

5. BASIC NUMERICAL EXAMPLES

5.1. Self-similar fault evolution

Our theory allows us to simulate the dynamics of a flat 2-D crack in an efficient way. First,
we illustrate the performance of our modelling scheme using a self-similarly evolving fault
model. In all the numerical examples that follow, we assumed p=1/ V3 or ¢, =3¢y, as is
commonly done. Also, the time-step interval A¢ was held constant throughout a numerical
run, unless otherwise stated.

We modelled the kinematic evolution of a planar fault, 309 grids long, which begins to
break at its midpoint at the initial time step and propagates bilaterally at a fixed speed of 0.9
times the Rayleigh wave speed cg =0.919¢7. This propagation speed is equal to that in the
mode IT numerical test presented by Andrews and Ben-Zion [27, Appendix]. We set the other
parameters equal to theirs: As=0.025, c;=1.0 and x=1.0, and no friction was assumed on
the crack surface. As in their paper, we present the calculated stress and traction so that the
uniform external stress level is equal to 1.0 and the stress drop on the broken patch of the
fault is equal to 0.5. This is different from the definition used elsewhere in the present paper
in which the external stress level is taken as the zero reference state. Further, as in their
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example, the traction on the crack was made to vary linearly at the ends, so that it takes two
spatial grid intervals for it to drop from 1.0 to 0.5. No artificial damping was used.

Figures 1 and 2 show the numerical results in terms of the time evolution of the slip, slip-
rate and traction on the crack, as well as the stress and displacement-rate field off the fault

Slip

Shear Traction x=1.0

0.9 1 1.4 1.2 1.3
Time

Slip Rate x=1.0

18
1.6
1.4
1.2

0.8
0.6
Shear Traction 0.4

Shear Traction x=2.8

2.6 28 3 3.2 34
25 Time

35
25

15

B
Slip Rate x=2.8

Posltion 0.5

34 36 38 4 42 44
Time

(a)

Figure 1. Self-similarly evolving planar 2-D crack in mode III, with hr = 1.0 and e, =0.43, over 180

time steps: (a) Left, time evolution of the traction, slip-rate and slip on the fault. Right, time vari-

ation of the traction and slip-rate at fixed points: top, traction at location 1.0 from the midpoint;

second, slip-rate at location 1.0; third, traction at location 2.8; bottom, slip-rate at location 2.8; (b)

Off-fault elastic field at the 60th time step or time 1.5. Top and middle, stress components g3 and 03z;
bottom, displacement-rate component 3.
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Stress_31 Stress_32 Displacement rate_3

83

Figure 1. Continued.

plane, for modes II and III; similar figures for mode I are omitted for brevity. The control
parameters were Ay = 1.0 and e; =0.43 for mode III and Ay =0.5 and ¢; = 1.0 for mode II; as
shown in the next section, these assure numerical stability. It is worth noting in these figures
that, even though the calculated slip has a smooth profile on the crack, the off-fault elastic
field appears fairly noisy, presumably due to the intermittent advancement of the crack tip
along the discretized model fault. This hypothesis on the origin of the noise comes from the
observation that, when we prescribed a slip-weakening friction law on the crack surface so
that the onset of slip might be smoother, the ragged off-fault field profile tended to smooth
too. However, since the off-fault field is no input to the BIE scheme, noise therein has no
harmful effects on the stability of the numerical scheme.

The time variation plots for the traction and slip-rate at two fixed locations, appearing in
these figures, are directly comparable to equivalent plots for mode II appearing in Reference
[27] as Figures A1-A4 (reproduced in solid lines on the right-hand-side panels of Figure 2a).
Since, in their results, the calculated time variations were noisier and much less stable for
the BIEM calculation than for the finite difference method (FDM), they argued that the FDM
was superior to the BIEM as a method for fault dynamics modelling. However, they used
an indirect BIE that corresponds to the inverse of the formulation in our present study.
In our modelling, the time variation profiles were smoother than their FDM results, as is
visible in our Figure 2a (though for the combination Ay =0.25 and e,=1.0, the profiles
were just as smooth as theirs, and for Ay =0.5 and ¢, =0.3, they were less smooth). This
implies that the BIEM can be as effective as the FDM, contrary to Andrews and Ben-Zion’s
conclusion.

5.2. Spontaneous fault evolution

Next, we illustrate the numerical result for a spontaneously evolving planar fault. Using the
same parameters as in the foregoing section for As, ¢y and p, we made a 31-grid-long crack
in mode IIT which abruptly emerge at the midpoint of a 309-grid-long planar fault, and traced
its spontaneous evolution according to the critical-stress rupture criterion. Figure 3 shows the
result of the calculation with control parameters sy =1.0 and e, =0.43. The external stress
o™ was set at 0.5, the critical stress T, at 1.0, and the friction law parameters in (20) were
oy =0.495 and Dy =0.3. This satisfies the condition recommended for the accurate resolution
of the slip-rate near the rupture front [28]:

Do>4-2T, As/u (33)
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No artificial damping was used. We suppressed back-slipping: wherever a negative slip-rate
was expected, we temporarily locked that part of the fault. The asymmetry in the figure is
due to data decimation in drawing.

Compared with the kinematic modelling result shown in Figure la, we sce that the slip-rate
and traction outputs are more prone to fluctuation and occasional emergence of extraordinarily
large values (some of which have been clipped off in the slip-rate graph for a clearer display
of the other parts).

slip

Tangential Traction x=1.0

0.9 1 11 1.2 1.3
Time

Slip Rate x=1.0

o =
o—=amhomw

Tangential Traction x=2.8

i

Time

. .«'ﬂ-]‘-‘{-w-,.
il

Position

Slip Rate x=2.8

34 36 38 4 42 44
Time

Figure 2. Self-similar mode II crack, with Ay =0.5 and e, =1.0, over 360 time steps: (a) Traction,

slip-rate and slip profiles. Legends as in Figure 1a. The solid lines in the panels on the right-hand side

are corresponding FDM results by Andrews and Ben-Zion [27]; (b) Off-fault elastic field at the 60th

time step or time 0.75. Top left, middle left and bottom left, stress components o1z, 611 and oy;; top
right and middle right, displacement-rate components u; and ;.
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Figure 2. Continued.

Slip Slip Rate Shear Traction
3 5 6
2 4 g
3 0
1 2 2
1 -4
e 0 -6

Position

Figure 3. Spontaneously evolving mode III crack, with Ay =1.0 and e, =0.43, over 277 time steps.
Legends as in Figures la.
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Slip Slip Rate = Shear Traction

200

o—=Nwso
Lbhoma

5
Position

Figure 4. Spontaneously evolving mode III crack, with Ay =1.0 and e, =045, over 251 time steps.
Legends as in Figures la. Numerical instability is observed.

6. NUMERICAL STABILITY

The stability of our BIEM numerical scheme depends on the choice of the grid parameter 4
and the time collocation parameter ¢,. For a wrong choice of these, oscillatory noise starts
to develop in the solution, amplifies and eventually explodes. We have found out, as shown
below, that the determination of the optimal pair (A, e,) is in fact more complicated a problem
than was envisaged by many previous authors. Figure 4 shows an example of the numerical
instability, in which we simulated the spontaneous evolution of a mode III crack under the
same conditions as in Figure 3, except that we used control parameters Ay = 1.0 and e, =0.45
and that we tolerated back-slipping.

The origin and nature of the instability phenomenon in the BIEM (both direct and indirect)
time-marching scheme [29, 30] are not very well known. Some authors, in their modelling of
the 2-D or 3-D crack, found their scheme unstable and suppressed the oscillation build-up by
introducing an artificial dissipation term [8, 10] or by introducing a slip-weakening friction
law [7, 26]. These methods did help to delay the manifestation of unstable oscillations but
did not provide a fundamental remedy; this implies that the instabilities are not due to the
inadequate modelling of the rupture phenomenon, since the oscillations persisted even when
appropriate account was taken of the finite length scale, an essential feature of the fault
constitutive laws [31]. Others [2—4] found their BIEM time-marching scheme very stable
even after a long numerical run in the modelling of the flat 2-D anti-plane crack. As Peirce
and Siebrits pointed out [22, 23], the instabilities are elusive in nature since they tend to
appear intermittently as the grid parameter # is changed continually.

Koller et al [8] pointed out the spatial, not temporal, nature of the unstable oscillations in
an indirect BIEM. Frangi and Novati [32] and Frangi [33, 34], who used a direct BIEM for-
mulation, also reflected on their origin using simple model cases, and argued that the failure
of the conventional interpolation method to accurately simulate the continuous propagation
of wave fronts and to respect the causality condition was one of the sources of the insta-
bilities. A more general mathematical approach to the problem of convergence and stability
of a discretized BIE was provided by Lubich [35]. However, Peirce and Siebrits [22, 23]
were the first to provide a theoretically consistent framework to this question; their work,
using the z-transform, suggested that the calculation could be absolutely stable for certain
numerical schemes and control parameters. They also pointed out that the numerical scheme
was more likely to be stable if the ‘self-effect’, or the influence a grid element or collocation
point has on itself with no time delay (K%"" in our terminology), was larger than the other
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element-to-element effects. Birgisson et al. [36], who dealt with direct BIEs, speculated that
the instabilities could also be due to numerical inaccuracies in treating a wave front cutting
partially through a discrete element and in evaluating element-to-element effects with large
time delays.

In the BIEM, there are no intrinsic limits on the value of the grid parameter A, except that
the solution regime is explicit only when e2< ] (we call this the CFL limit in analogy to the
FDM). To cover a given time duration with a minimal number of time steps, larger values of A
are preferable, whereas smaller values of h are preferred for a finer time resolution. Meanwhile,
small values of 4 are prone to oscillatory numerical instabilities [7, 9, 11, 30, 32, 33]. Cochard
and Madariaga [3, 4] fixed Ay at 0.5 and found out empirically that e;= 1.0 gave the best
and most stable result for the planar 2-D anti-plane crack. Fukuyama and Madariaga [7] fixed
e, at 1.0 and decided, by trial and error, that Ay =0.5 gave the optimal result for the 3-D
quasi-anti-plane crack, and Ay =0.25 for the 3-D circular crack. Seelig and Gross [11], who
used a scheme equivalent to e, = 1.0, recommended the range 0.5 <A <1.0 for the non-planar
2-D in-plane crack.

In order to study the instability, we carried out an exhaustive set of experimental numerical
runs for different sets of control parameters (%r,e,) in all three modes of fracture. The model
crack was made to grow self-similarly, with a fixed speed of 0.9cg, from the midpoint of a
fault composed of 49 space grids, and, after the crack ends have reached the ends of the fault,
the calculation was continued with a stationary crack geometry. An abrupt stress drop was
assumed at the tips of the crack, on which no friction was assumed and back-slipping was
tolerated. We measured the degree of instability in terms of the number of time steps elapsed
before the amplitude of the oscillation exceeded a certain threshold level. The amplitude was
measured by the maximum absolute value of the calculated slip, and the threshold was equal
to 8.2 times the final elastostatic midfault slip in the anti-plane mode and 10.9 times that
in the in-plane modes. We ran the time-marching scheme over 1000 time steps, and if the
above instability criterion was not reached by the 1000th time step, we looked at the final
slip profile, and, if the calculated slip decreased monotonously from the midpoint to the ends,
we labeled it as ‘very stable’, and otherwise, we termed it as ‘near-stable’. We plotted, in
Figures 5-7, the map of this instability indicator in the parameter space hr—e:.

In interpreting the experimental results, it should be realized that our experiments do not
guarantee that the stability behaviour will be the same for any crack evolution history. In
this sense, our results should be regarded as providing a necessary condition for the stability.
However, Peirce and Siebrits’ theory [22, 23] suggests that the stability does not, in principle,
depend on specific slip histories. In fact, the results changed very little when we used a crack
propagation velocity of 0.5cg, or when crack propagation was initiated from a finite length
instead of a single point.

The ‘very stable’ and ‘near-stable’ labels should be taken with caution. In fact, we some-
times saw these two labels replaced by each other when we carried out the numerical calcula-
tion under different slip histories as stated above. The ‘very stable’ label does not automatically
guarantee that the scheme is going to remain stable as long as you like. We consider, however,
that the ‘stable/unstable’ labelling represents, for practical purposes, a good enough indicator
of the long-term stability behaviour of the BIEM scheme.

Imposing a gradual stress drop, on the crack ends [27] had the effect of only marginally
delaying the instability build-up. This implies that the presence of a length scale in the
formulation, which is essential in modelling a spontaneously evolving crack [31], does not
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Figure 6. Stability map in mode II. Legends as in Figure 5. The two broken curves
are the CFL limits for the P and S waves.

necessarily play a major role in the stabilization of the numerical scheme, at least in the case
investigated here.

As we can see in Figures 5-7, the scheme proved stable, when e, <1, for a fairly wide
range of control parameters in modes I and III; in mode II, it was unstable over most part of
the parameter plane. Curiously, there are at least four isolated islands of stability in mode II,
namely, near h; =0.25 and e, =0.9-1.0, 77 =0.5 and ¢,=0.2-0.3, Ay = 1.0 and ¢ =0.5-0.8,
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Figure 7. Stability map in mode I. Legends as in Figures 5 and 6.

and along the curve hr-e, = 0.5; the first one was discovered by Cochard (1998, pers. comm.).
This suggests that the numerical instability of the BIEM scheme, pointed out by so many
authors, may, in fact, not be intrinsic to the scheme but depend on the choice of the control
parameters. The mode II result well illustrates the intermittent appearance of instabilities with
changing 4 [22, 23]. When we allow / and e, to change independently, however, we see that
the pattern of instability emergence is still more complicated.

In Figures 57, we also mapped the case of e, > 1. Peirce and Siebrits [22] pointed out that
such a measure tended to improve the stability of a BIEM scheme, because it enhanced the
‘self-effect’” (K®™") while the other element-to-element effects remained largely unaltered, and
called this method the ‘z-scheme’ (their parameter ¢ corresponds to e, — 1 in our terminology).
Definitions (5) and (6) remain the same, except that, when dealing with the nth time step,
the contemporaneous time-step interval A, is extended up to 7, so that (Figure 8)

ot = g AE, A=, &> (34)

As seen in Figure 6, we found out that the modes I and II calculations were very stable over
a wide range of &y if we took e, larger than about 1.2 and 1.6, respectively. The calculation
results were accurate and smooth, although a certain time delay was duly recognized (Figure
9). The BIEM scheme was also very stable in mode III for e;>1 except for very small
values of hy. This agrees with Peirce and Siebrits’ argument [22, 23] that the g-scheme helps
to enhance numerical stability.

As for the cause of the numerical instabilities, we found out that the unstable region,
found in the lower right part of Figure 5 roughly for A7 >09 and ¢ <0.7, approximately
coincided with the region where the self-effect K®™” was smaller than the delayed effect
KLnm which is in line with Peirce and Siebrits” speculations [22, 23]. Otherwise, however,
no obvious relationship was found out between the instability of the BIEM scheme and the
relative magnitude of the self-effect with regard to other element-to-element effects.
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Figure 8. Peirce and Siebrits’ e-scheme.

It is worth noting that the similar BIEM scheme for the planar 3-D shear crack is unstable
for the set ¢,=1.0 and hy =025 [37], which falls in the stable region both in modes III
and Il in the 2-D case. This shows that the stability behaviour of the BIEM scheme in 2-D
does not automatically translate to the equivalent 3-D case. Interestingly, in their numerical
examples, instability built up in the mode II direction first, which is in conformity with the
implication from our 2-D results.

7. VARIABLE TIME STEPS

As mentioned earlier, the time-step interval need not be fixed in our time-marching scheme. To
illustrate the use of variable time steps, a planar 2-D crack in mode III was made to propagate
bilaterally under the same condition as in Figure 1. The discrete time-step increments At were
made to oscillate as exponential sine, with hr varying between 0.25 and 1.0 with a period
of 40 time steps. The time collocation parameter e, was fixed at 1.0, and this choice of
control parameters allowed the scheme to stay within the stability domain in Figure 5. The
BIE was solved either under the explicit or implicit regime depending on the CFL criterion.
Figure 10 demonstrates the good performance of this variable time step scheme. It should
be noted, however, that the use of variable time-step intervals precludes the time-translation
invariance of the discretized convolution kemels, thus significantly increasing the numerical
expense.

8. CONCLUSION

We have presented a numerical method, based on a BIEM theory, for modelling the dynamics
of a flat 2-D crack in all modes of fracture. This method has the advantage that the coefficients
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Figure 9. Self-similar mode II crack, with Ar=1.0 and e;=2.0 {¢-scheme), over 180 time steps.
Legends as in Figure 2a. The solid lines in the panels on the right-hand side are corresponding FDM
results by Andrews and Ben-Zion [27].

in the discrete equations can be obtained in an analytical way under certain assumptions and,
if the time-step interval is sufficiently small with respect to the spatial grid size, the equations
simplify and can be solved explicitly. Although this method is pot new for the flat 2-D anti-
plane and the flat 3-D cracks, we extended it to the case of the flat 2-D in-plane crack. We
have also shown that this method can be extended to the calculation of the elastic wave field
off the crack plane.
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We have investigated, by means of exhaustive trial runs with different sets of control
parameters, a Necessary condition for the stability of this numerical scheme for all modes of
fracture. It was shown that, for the case investigated, the scheme was very stable for a fairly
wide range of parameters in modes I and III, and for some narrow ranges in mode II. This
indicates that the numerical instabilities, pointed out by so many authors previously, may not
be intrinsic to the method but depend on the choice of control parameters. The use of Peirce

and Siebrits’ e-scheme [22] helped to stabilize the numerical calculation. Our method also
allows for the use of variable time-step intervals.
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APPENDIX. CONVOLUTION COEFFICIENTS FOR THE
OFF-FAULT ELASTIC FIELD

Here we give the convolution coefficients for the discrete expressions of the off-fault stress
and displacement field (29)-(32). The coefficients for the stress are

i, knm i 1 j hort hort
K};J;h =hgq (xil — &+ EAS,X{, by — ) — D530 (x ( Sk — ‘AS xz,t _rs ° )

=Ty a0 (xl s+ 34, xhat, —tl‘mg) +L. a3a( | —sx—1As, X] by — f}n"“g) (A1)

i jknm

o 3 and

and likewise for K
s, = 2211 (1 = Z) ety =1 (42)
T

Lion(x,1)=H(x)H (f— M) Asgn(x )H( ) [@W» Arccos%]

(A3)
Ton1(X,1)
= La(e- 2) 222002 e - 7+ (1- ) Ve
5 W 2
T N
II:JZZ(X:t)

L= 22 Dy e 7+ (o))

_lH(ti)zg{E%@( crtfr — 117 (Zr—;—I)\/Q:Tt/)——_I} (45)
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Log12(X, 1) = 11.622(X, 1) (A9)
where

F=4/x2 +x2 (A10)

ur =12 — (xpfcr)? (A11)

up = /12 — (x2fcL)? ' (A12)

In the limit x, —» 0 and x; —s, (A3), (A6) and (A8) reduce to I3.r3 in (9), Iim in (17) and
L., in (18), respectively.
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The coefficients for the displacement are
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Their time derivatives are given by

I303(x, 1) = sgn(x )H (x1 )H (t — I_zl) g sgn(x; ) sgn(xz )H (r — Cr—r) EArccos——t

Fra(x,1) = _cpmt [H (r - ci) 2 _(rfcL) — H(t - Ci) VB (r/c;r)z}

it

+ sgn(x; )H (x1 )H ( i 2') 3 — sgn(x;) sgn(x; )H ( CFT) %Arccos%g
(A20)

Fraa(x,6) = et ) [ [ ( Ci) 2 —(rjeL)? —H(t - C”—T) \/ﬁ——(r/ﬁ]

21’5)"4 '3

. 2
+$H (I_CL) pz 1ogL__t__(rfL_)_ (A21)
1

12— (rfcr)?
2052 _ 52
Frn(x, 1) = IO =) Z;mj‘z)’ {H (r - é) 2= (rfc) — H(t _ E’";) JEZ (r'/CT)Z}
1 A t— /8 —(rfe) x/z—("/CLV
* 41 H(r c;.) @ ) 10g — (rfer)?
r t— /12— (rfer)?
() = 252 [ (r - f) N oy ey H( ) VA= (r/cT)Z]
+ sgn(e)H (x)H (t . U) — sgn(x) sgnx)H (t - {:) 5 Arcco 'ﬁ;
(A23)
As x; -0 and x; —s, (Al4), (A15) and (A18) reduce to
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