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Abstract We derive a non-hypersingular boundary inte-
gral equation, in a fully explicit form, for the time-domain
analysis of the dynamics of a 3-D non-planar crack, lo-
cated in an in®nite homogeneous isotropic medium. The
hypersingularities, existent in the more straightforward
expression, are removed by way of a technique of regu-
larization based on integration by parts. The variables are
denoted in terms of a local Cartesian coordinate system,
one of the axes of which is always held locally perpen-
dicular to the potentially curved surface of the crack. Also
given, in a fully explicit form, are the expressions for the
off-fault stress and displacement ®eld, as well as the special
form of the equations for the case in which the fault is
planar.

1
Introduction
In seismology, numerical modeling of the dynamics of
rupture propagation on faults with a realistic geometry is
essential in the efforts to better understand the complex
nature of earthquake phenomena. However, numerical
analysis of rupture on non-planar faults has faced many
technical dif®culties. In the present paper, we present a
new theoretical framework, based on the boundary inte-
gral equation method (BIEM), to describe the dynamics of
3-D cracks with arbitrary geometry, which is expected to
provide an important basis for future advances in the
practical numerical modeling of non-planar cracks.

The BIEM has been extensively applied to various
classes of 2-D and 3-D crack-analysis problems (e.g. Bes-
kos 1997). According to the displacement discontinuity
method, which has produced the most successful results
to date, the stress ®eld over the model space is expressed
as a convolution, in time and space, of the slip along the
crack and a set of integration kernels. Then a limiting
process is so applied that the receiver point approaches
the crack face, producing a set of boundary integral
equations (BIEs) that relate the traction on the crack
surface to the slip on it.

The traction BIEs, thus derived, are hypersingular, and
are not immediately amenable to numerical implementa-
tion. One of the most popular and successful methods to
circumvent the hypersingularities is the approach of reg-
ularization. This consists in rewriting, most often through
integration by parts, the hypersingular integrals in an
equivalent form which involves only weakly singular in-
tegrals, at most integrable in the sense of Cauchy principal
values.

The integration by parts technique allowed SlaÂdek and
SlaÂdek (1984) and Nishimura and Kobayashi (1989) to
derive a non-hypersigular BIE for 3-D non-planar cracks,
in the Laplace domain and the frequency domain, re-
spectively. These formulations, however, could deal only
with the transient response of stationary cracks. Later, an
alternative technique, based on path-independent conser-
vation integrals, was used by Zhang and Achenbach (1989)
and Zhang (1991) to derive regularized elastodynamic
BIEs for 3-D non-planar cracks, in the frequency domain
and the time domain respectively. However, it was not
evident how their BIEs could be implemented to non-
planar crack problems, because they were written in a
global Cartesian coordinate system, which does not nec-
essarily agree with the curved surface of the crack, on
which slip is de®ned.

Because of this disadvantage, these earlier BIEs for
the 3-D non-planar crack have been con®ned to con-
ceptual expressions, and they have been reduced to a
numerically implementable form only for the special
case of the planar crack. Numerical study of the dy-
namics of the 3-D planar crack has been conducted by
Zhang and Gross (1993), who used Zhang's (1991)
equations, as well as in an independent work by
Fukuyama and Madariaga (1995, 1998), who used the
integration by parts technique. Meanwhile, there have
been alternative formulations of the elastodynamic BIEs
for the time-domain analysis of the 3-D planar crack.
Das' (1980) pioneering formulation was based on the
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traction method, in which the displacement ®eld was
expressed as a convolution, in space and time, of the
traction on the crack and a set of integration kernels.
Geubelle and Rice (1995) followed the displacement
discontinuity method, but they formulated their BIEs
based on a Fourier transform in space.

A recent study by Krysl and Belytschko (1999) illus-
trates an original method for a time-domain elastody-
namic analysis of a 3-D crack of arbitrary geometry, based
on the Element-Free Galerkin method which obviates the
need for re-meshing.

In the present paper, we enlarge Fukuyama and Ma-
dariaga's (1998) integration by parts technique to derive,
for the ®rst time, a non-hypersingular time-domain BIE
for the 3-D non-planar crack in a fully explicit form. In
order to represent the BIE in terms of the one opening
and two shear components of the slip on the crack
surface, we introduce a local Cartesian coordinate
system ®rst used by Tada and Yamashita (1997). The
present article comprises: (1) the BIE describing the
traction-slip relation for the 3-D non-planar crack; (2) a
similar expression for the off-fault stress ®eld, and its
special form for the planar crack; and (3) a similar
expression for the off-fault displacement ®eld, and its
special form for the planar crack.

2
Representation theorem
We start from the representation theorem of elasticity that
expresses the elastic displacement ®eld over the entire
medium in terms of the slip distribution along the crack.
Assuming that the medium is at rest with no slip for time
t � 0, and that the traction is continuous across the crack,
we have, for a crack located in an in®nite homogeneous
isotropic elastic medium,

uk�x; t� � ÿ
Z
C

dS�n�
Z t

0

dsDui�n; s�cijpqnj�n�

� o
oxq

Gkp�x; t ÿ s; n; 0� ; �1�

where uk�x; t� is the displacement in the k-th direction
at receiver point x and time t, C the crack surface, n
the source point on C, Dui�n; s� the slip across the crack
in the i-th direction at location n and time s as de®ned
by the relative displacement of one (positive) side of C
with reference to the other (negative) side, cijpq the
elastic constants, and n�n� the unit vector normal to
the crack surface at location n pointing from the nega-
tive to the positive side of C (Fig. 1). Gkp�x; t ÿ s; n; 0�
is the displacement Green's function, representing the
displacement in the k-th direction at receiver point x
and time t ÿ s due to a unit force in the p-th direction
applied at source point n and time 0. Summation over
repeated indices is implied and dab denotes the Kro-
necker's delta.

Equation (1) can be rewritten as

uk�x; t�

� ÿ
Z
C

dS�n�
Z t

0

dsDui�n; s�nj�n�Rij=k�x; t ÿ s; n; 0� ;

�2�
where, if the medium is isotropic,

Rij=k�x; t ÿ s; n; 0� � cijpq
o

oxq
Gpk�x; t ÿ s; n; 0�

� kdijopGkp � l�oiGjk � ojGik� ; �3�
with k and l being the LameÂ constants, is the stress
Green's function, representing the ij-component of the
stress at receiver point x and time t ÿ s due to a unit force
in the k-th direction applied at source point n and time 0.
The Green's functions satisfy the equations of motion

o
oxj

Rij=k � q
o2

ot2
Gik ; �4�

with q denoting the density.
In the following, an abbreviated notation

oi � o
oxi

; Dui;j � o
onj

Dui�n; s� �5�

will be used for partial derivatives with respect to space,
and time derivatives will be denoted by dots, especially by:

�Gij � o2

ot2
Gij�x; t ÿ s; n; 0�; D�ui � o2

os2
Dui�n; s� : �6�

Also, cL and cT are the P- and S-wave velocities respec-
tively. Roman subscripts are supposed to run over 1, 2 and
3, while Greek subscripts run over 1 and 2, and summation
over repeated indices will be implied wherever necessary.
Use is also made of the reciprocity relations

o
onk

Gij�x; t ÿ s; n; 0� � ÿ o
oxk

Gij�x; t ÿ s; n; 0� �7�
o
os

Gij�x; t ÿ s; n; 0� � ÿ o
ot

Gij�x; t ÿ s; n; 0� : �8�

3
3-D Green's functions
For simplicity, we use notations

r � jjxÿ njj; ci � �xi ÿ ni�=r �9�

∆

Γ

n (ξ)

ξ
(ξ)u

x
receiver point

displacement

slip
source point

u(x)
normal vector

crack surface

Fig. 1. Nomenclature for symbols614



for the length and orientation cosines of the source-re-
ceiver vector, and

p2 � c2
T

c2
L

� l
k� 2l

: �10�

The displacement Green's function Gij is given by

Gij � oiojJ � dijGT �11�
or

G11 � o2
1J � GT

G22 � o2
2J � GT

G33 � o2
3J � GT

G23 � o2o3J

G31 � o3o1J

G12 � o1o2J

; �12�

with

J � 1

4pq

"
1

r

Ztÿsÿr=cL

0

ds � sd�t ÿ sÿ r=cL ÿ s�

ÿ 1

r

Ztÿsÿr=cT

0

ds � sd�t ÿ sÿ r=cT ÿ s�
#

�13�

GT � 1

4plr
d�t ÿ sÿ r=cT� �14�

for the elastodynamic case and

J � p2 ÿ 1

8pl
r �15�

GT � 1

4plr
�16�

for the elastostatic case. Explicit forms of the Green's
functions are given in Appendix A. Of particular impor-
tance in the present article is the linear combination

GL � G11 � G22 � G33 ÿ 2GT

� 1

4plr
p2d�t ÿ sÿ r=cL� �17�

for the dynamic case and

GL � G11 � G22 � G33 ÿ 2GT � 1

4plr
p2 �18�

in the static case.

Combining the symmetry relation (12) with the
equations of motion

cÿ2
T

�GT � �o2
1 � o2

2 � o2
3�GT �19�

p2cÿ2
T

�GL � �o2
1 � o2

2 � o2
3�GL ; �20�

we obtain the identities:

o2
3G33 � p2cÿ2

T
�GL ÿ �o2

1 � o2
2��G33 ÿ GT � GL� �21�

o2
3G11 � cÿ2

T
�GT � o2

1�G33 ÿ GT� ÿ �o2
1 � o2

2�GT �22�

o2
3G22 � cÿ2

T
�GT � o2

2�G33 ÿ GT� ÿ �o2
1 � o2

2�GT ; �23�
which shall be utilized later in order to remove terms
containing the derivative o2

3. Although alternative forms
of these equations of motion are possible, we choose to
use the speci®c form given by Eq. (21) through Eq. (23),
because these render the ®nal BIE in the simplest
form.

4
Planar crack
By way of introduction, we start with the simple case of the
planar crack. The representation theorem states that:

u3�x; t� � ÿ
Z
C

dS�n�
Z t

0

ds
�
Du1�lo1G33 � lo3G13�

� Du2�lo2G33 � lo3G23�

� Du3�ko1G13 � ko2G23 � �k� 2l�o3G33�
	

� ÿl
Z
C

dS�n�
Z t

0

ds

�
�Du1o1 � Du2o2��2G33 ÿ GT�

� Du3o3 2G33 � 1ÿ 2p2

p2
GL

� ��
; �25�

where we made use of the symmetry relation (12). The
equation for u2 is obtained by considering the symmetry
between the x1- and x2-coordinates. Accordingly,

u1�x; t� � ÿ
Z
C

dS�n�
Z t

0

ds�Du1R13=1 � Du2R23=1 � Du3R33=1�

� ÿ
Z
C

dS�n�
Z t

0

ds
�
Du1�lo1G13 � lo3G11� � Du2�lo2G13 � lo3G12� � Du3�ko1G11 � ko2G12 � �k� 2l�o3G13�

	

� ÿl
Z
C

dS�n�
Z t

0

ds

�
Du1o3�2G11 ÿ GT� � Du2 � 2o3G12 � Du3o1 2G33 ÿ 2GT � 1ÿ 2p2

p2
GL

� ��
�24�
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where Eqs. (12), (20) and (21) have been used and in-
tegration by parts has been carried out, so as to prevent
hypersingular integrals from appearing in a later BIE.
With the limiting process x! s 2 C, r33 approaches the
normal traction T3 across the crack at location s and
time t:

T3�s; t� � r33�s; t� : �27�
With the 3-D Green's functions behaving as 1=r in the
limit of r ! 0, the integrals that involve the ®rst-order
spatial derivatives of G33, GT and GL are of the order of
1=r2 as r ! 0 and thus are integrable in the sense of
Cauchy principal values.

Likewise, making use of Eqs. (12), (19) and (22) and
integrating by parts,

The tangential traction T1 across the crack at location s is
given by T1�s; t� � r31�s; t�. This, along with a similar
equation for T2, may be generalized to

Ta�s; t� � ÿl2

Z
C

dS�n�
Z t

0

ds

�
Dub;boa�4G33 ÿ 3GT�

ÿ Dua;bobGT � Du3;a

� 2o3 2G33 ÿ GT � 1ÿ 2p2

p2
GL

� ��

ÿ l2cÿ2
T

Z
C

dS�n�
Z t

0

dsD�uaGT : �29�

Equations Eqs. (27) and (29) constitute a set of non-hy-
persingular BIEs for the 3-D planar crack that express the
traction in terms of the slip.

This is the theory underlying Fukuyama and Madari-
aga's (1998) formulation. Substituting the explicit forms of

the Green's functions into Eqs. (27) and (29) and making
use of the following identity (Fukuyama and Madariaga
1995; Appendix B to the present article):

r31�x; t� � l�o1u3 � o3u1�

� ÿl2

Z
C

dS�n�
Z t

0

ds

�
�Du1o1 � Du2o2�o1�4G33 ÿ 3GT� � Du1�ÿ�o2

1 � o2
2�GT � cÿ2

T
�GT�

� Du3 � 2o1o3 2G33 ÿ GT � 1ÿ 2p2

p2
GL

� ��

� ÿl2

Z
C

dS�n�
Z t

0

ds

�
Dub;bo1�4G33 ÿ 3GT� ÿ Du1;b � obGT � Du3;1 � 2o3 2G33 ÿ GT � 1ÿ 2p2

p2
GL

� ��

ÿ l2cÿ2
T

Z
C

dS�n�
Z t

0

dsD�u1GT : �28�

r33�x; t� � l
1

p2
o3u3 � 1ÿ 2p2

p2
�o1u1 � o2u2�

� �

� ÿl2

Z
C

dS�n�
Z t

0

ds

�
�Du1o1 � Du2o2� � 2o3 2G33 ÿ GT � 1ÿ 2p2

p2
GL

� �

ÿ 4Du3�o2
1 � o2

2� G33 ÿ GT � 1ÿ p2

p2
GL

� �
� 1

p2
cÿ2

T Du3
�GL

�

� ÿl2

Z
C

dS�n�
Z t

0

ds

�
Dua;a � 2o3 2G33 ÿ GT � 1ÿ 2p2

p2
GL

� �
ÿ Du3;a � 4oa G33 ÿ GT � 1ÿ p2

p2
GL

� ��

ÿ l2cÿ2
T

Z
C

dS�n�
Z t

0

dsD�u3
1

p2
GL ; �26�
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Z
C

dS�n� 1

r
D�ui�n; t ÿ r=c�

� 2pcD _ui�s; t� ÿ c

Z
C

dS�n� ca

r
D _ui;a�n; t ÿ r=c�

�if s 2 C� �30�
with

r � jjsÿ njj �31�
ci � �si ÿ ni�=r ; �32�
we eventually arrive at:

Equations (33) and (34) coincide with Eq. (A1) and Eq. (3)
(or (C21)) of Fukuyama and Madariaga (1998) respec-
tively.

Static case
The elastostatic counterpart of Eqs. (33) and (34) can be
obtained by simply dropping the time dependence:

T3�s� � ÿ l
2p
�1ÿ p2�

Z
C

dS�n� ca

r2
Du3;a�n� �35�

Ta�s� � ÿ l
4p

Z
C

dS�n�
�
�1ÿ 2p2� ca

r2
Dub;b�n�

� cb

r2
Dua;b�n�

i
: �36�

Our Eq. (35) coincides with Eq. (5) of Fukuyama and
Madariaga (1995), while our Eq. (36) is a simpli®cation
over their Eq. (6).

5
Local Cartesian coordinate system
For the non-planar crack case, we de®ne a local Cartesian
coordinate system, one of the axes of which is always held

locally perpendicular to the crack surface (Tada and Ya-
mashita 1997). This normal axis shall be denoted by xn,
and the other two, locally tangential to the crack surface,
shall be named xs and xt , in such a way that (xn; xs; xt)
forms a right-handed system (Fig. 2). The choice of xs and
xt has one degree of freedom corresponding to rotation.
We also denote the unit vectors in the three orthogonal
directions by n, s and t respectively. The local and global
coordinate systems are mutually interchangeable by
transformation formulae including:

Dui�n; s� � ni�n�Dun�n; s� � si�n�Dus�n; s�
� ti�n�Dut�n; s� �37�

on � ni�n�oi; os � si�n�oi; ot � ti�n�oi : �38�
Gnn � ni�n�nj�n�Gij

Gss � si�n�sj�n�Gij

Gtt � ti�n�tj�n�Gij

Gst � si�n�tj�n�Gij

Gtn � ti�n�nj�n�Gij

Gns � ni�n�sj�n�Gij

: �39�

This system of local Cartesian coordinates allows us to
formulate the BIEs in such a way that all the spatial

xn

x t

xs

normal direction

first tangential direction

second tangential direction

surface
crack

Fig. 2. Local Cartesian coordinate system

T3�s; t� � ÿ 3l
p

Z
C

dS�n� ca

r2

Zp

1

dv � vDu3;a�n; t ÿ vr=cT� ÿ l
p

Z
C

dS�n� ca

r2
Du3;a�n; t ÿ r=cT�

ÿ l
p
�1ÿ 2p2�

Z
C

dS�n� ca

r2
Du3;a�n; t ÿ r=cL� � l

4pcT

�1ÿ 2p2�2
p

Z
C

dS�n� ca

r
D _u3;a�n; t ÿ r=cL�

ÿ l
2pcT

D _u3�s; t� �33�

Ta�s; t� � 3l
p

Z
C

dS�n� ca

r2

Zp

1

dv � vDub;b�n; t ÿ vr=cT� � 5l
4p

Z
C

dS�n� ca

r2
Dub;b�n; t ÿ r=cT�

ÿ l
p

p2

Z
C

dS�n� ca

r2
Dub;b�n; t ÿ r=cL� � l

4pcT

Z
C

dS�n� ca

r
D _ub;b�n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� cb

r2
Dua;b�n; t ÿ r=cT� ÿ l

2cT
D _ua�s; t� : �34�
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derivatives of the slip Du are those with respect to xs and
xt . This constitutes an advantage over the use of the global
coordinates �x1; x2; x3� as in Zhang (1991), since the slip
Du is de®ned only along the crack surface.

It should be noted that the symmetry relations (12), as
well as the equations of motion (19) through Eq. (23), hold
true after replacing the indices 1; 2; 3 with n; s; t respectively.
Hereafter we use the subscript z which runs over n, s or t.

6
Non-planar crack
In the non-planar 3-D crack case, the representation
theorem states that:

where we made use of the symmetry relation (12).
Accordingly,

with

akl�n� � ��1ÿ 2p2�=p2�dkl � 2nk�n�nl�n�;
bkl�n� � ��1ÿ 2p2�=p2�dkl � 2sk�n�sl�n�;
ckl�n� � ��1ÿ 2p2�=p2�dkl � 2tk�n�tl�n�;
dkl�n� � nk�n�sl�n� � sk�n�nl�n�
ekl�n� � nk�n�tl�n� � tk�n�nl�n�
fkl�n� � sk�n�tl�n� � tk�n�sl�n� :

�42�

Making use of the symmetry relation (12) and the equa-
tions of motion (19) through Eq. (23) and integrating by
parts, this can be rewritten as

uk�x; t� � ÿ
Z
C

dS�n�
Z t

0

dsDui�n; s�nj�n�Rij=k�x; t; n; s� � ÿ
Z
C

dS�n�
Z t

0

ds�DunRnn=k � DusRsn=k � DutRtn=k�

� ÿ
Z
C

dS�n�
Z t

0

ds�Dun�nkRnn=n � skRnn=s � tkRnn=t� � Dus�nkRsn=n � skRsn=s � tkRsn=t�

� Dut�nkRtn=n � skRtn=s � tkRtn=t��

� ÿ
Z
C

dS�n�
Z t

0

dsDunfnk��k� 2l�onGnn � kosGsn � kotGtn� � sk��k� 2l�onGns � kosGss � kotGts�

� tk��k� 2l�onGnt � kosGst � kotGtt�g ÿ
Z
C

dS�n�
Z t

0

dsfDus�nk�lonGsn � losGnn�

� sk�lonGss � losGns� � tk�lonGst � losGnt�� � Dut�nk�lonGtn � lotGnn� � sk�lonGts � lotGns�
� tk�lonGtt � lotGnt��g

� ÿl
Z
C

dS�n�
Z t

0

dsDun nkon 2Gnn � 1ÿ 2p2

p2
GL

� ��
��skos � tkot� 2Gnn ÿ 2GT � 1ÿ 2p2

p2
GL

� ��

ÿ l
Z
C

dS�n�
Z t

0

ds �Dusos � Dutot�nk�2Gnn ÿ GT�f � �Dusskon�2Gss ÿ GT� � Duttkon�2Gtt ÿ GT��

� 2�Dustk � Dutsk�onGstg ; �40�

rkl�x; t� � kdklopup � l�okul � oluk�

� ÿl2

Z
C

dS�n�
Z t

0

dsDun

�
�aklon � dklos � eklot�on 2Gnn � 1ÿ 2p2

p2
GL

� �

� �dklon � bklos � fklot�os 2Gnn ÿ 2GT � 1ÿ 2p2

p2
GL

� �
� �eklon � fklos � cklot�ot 2Gnn ÿ 2GT � 1ÿ 2p2

p2
GL

� ��

ÿ l2

Z
C

dS�n�
Z t

0

ds
��Dusos � Dutot��aklon � dklos � eklot��2Gnn ÿ GT� � Dus�dklon � bklos � fklot�on�2Gss ÿ GT�

� Dut�eklon � fklos � cklot�on�2Gtt ÿ GT� � 2�Dusekl � Dutdkl�osot�Gnn ÿ GT� � 2�Dusfkl � Dutbkl�onot�Gss ÿ GT�
� 2�Dusckl � Dutfkl�onos�Gtt ÿ GT�

�
; �41�
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De®ning the multiplying coef®cients

Az�s; n� � nk�s�zl�s�akl�n�
� 2nk�s�zl�s�nk�n�nl�n� � ��1ÿ 2p2�=p2�dzn

Bz�s; n� � nk�s�zl�s�bkl�n�
� 2nk�s�zl�s�sk�n�sl�n� � ��1ÿ 2p2�=p2�dzn

Cz�s; n� � nk�s�zl�s�ckl�n�
� 2nk�s�zl�s�tk�n�tl�n� � ��1ÿ 2p2�=p2�dzn

Dz�s; n� � nk�s�zl�s�dkl�n�
� nk�s�zl�s��nk�n�sl�n� � sk�n�nl�n��

Ez�s; n� � nk�s�zl�s�ekl�n�
� nk�s�zl�s��nk�n�tl�n� � tk�n�nl�n��

Fz�s; n� � nk�s�zl�s�fkl�n�
� nk�s�zl�s��sk�n�tl�n� � tk�n�sl�n�� ;

�44�

we have, after taking the limit x! s 2 C, the following
equation for the z-component of the traction across the
crack at location s and time t:

rkl�x; t� � ÿl2

Z
C

dS�n�
Z t

0

ds

�
ÿ akl�Dun;sos � Dun;tot� 2Gnn ÿ 2GT � 1

p2
GL

� �

� �bklDun;sos � cklDun;tot � fkl�Dun;sot � Dun;tos�� 2Gnn ÿ 2GT � 1ÿ 2p2

p2
GL

� �
� 2�dklDun;s � eklDun;t�on 2Gnn ÿ GT � 1ÿ 2p2

p2
GL

� ��

ÿ l2

Z
C

dS�n�
Z t

0

ds
��Dus;s � Dut;t��aklon�2Gnn ÿ GT� � �dklos � eklot��4Gnn ÿ 3GT��

� Dus;son�bkl�2Gss ÿ GT� � 2ckl�Gtt ÿ GT�� � Dut;ton�ckl�2Gtt ÿ GT�
� 2bkl�Gss ÿ GT�� � Dus;tfklon�4Gss ÿ 3GT� � Dut;sfklon�4Gtt ÿ 3GT�

ÿ �Dusdkl � Dutekl��;sos �;t ot�GT

	ÿ l2cÿ2
T

Z
C

dS�n�
Z t

0

ds�D�unaklGL � �D�usdkl � D�utekl�GT� : �43�

Tz�s; t� � nk�s�zl�s�rkl�s; t�

� ÿl2

Z
C

dS�n�
Z t

0

ds

�
ÿ Az�Dun;sos � Dun;tot� 2Gnn ÿ 2GT � 1

p2
GL

� �

� �BzDun;sos � CzDun;tot � Fz�Dun;sot � Dun;tos�� 2Gnn ÿ 2GT � 1ÿ 2p2

p2
GL

� �
� 2�DzDun;s � EzDun;t�on 2Gnn ÿ GT � 1ÿ 2p2

p2
GL

� ��

ÿ l2

Z
C

dS�n�
Z t

0

ds
��Dus;s � Dut;t��Azon�2Gnn ÿ GT� � �Dzos � Ezot��4Gnn ÿ 3GT� � 2Bzon�Gss ÿ GT�

� 2Czon�Gtt ÿ GT�� � �Dus;sBz � Dut;tCz�onGT � Dus;tFzon�4Gss ÿ 3GT� � Dut;sFzon�4Gtt ÿ 3GT�

ÿ�DusDz � DutEz��;sos �;t ot�GT

o
ÿ l2cÿ2

T

Z
C

dS�n�
Z t

0

ds�D�unAzGL � �D�usDz � D�utEz�GT� : �45�
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The right hand side of this equation is non-hypersingular,
in that the integral terms involve at most ®rst-order spatial
derivatives of Gij, GT and GL which behave as 1=r2 as
r ! 0, and are hence integrable in the sense of Cauchy
principal values. Equation (45) is our non-hypersingular
BIE for the 3-D non-planar crack problem, expressing the
traction components in terms of the slip components. In
the special case of the planar crack, it can be easily shown
that (45) reduces to Eqs. (27) and (29).

Substituting the explicit forms of the Green's functions
into Eq. (45), we ®nally have, after some algebra,

where

U1z�n; s� � �Dun;scs � Dun;tct�Az

U2z�n; s� � Dun;sBzcs � Dun;tCzct

� �Dun;sct � Dun;tcs�Fz

U3z�n; s� � �Dun;sDz � Dun;tEz�cn

W4z�n; s� � �U1z ÿ U2z ÿ 2U3z�c2
n

�47�

are combinations of the spatial derivatives of the normal
(or opening) component of the slip and

U5z�n; s� � �Dus;s � Dut;t�Azcn

U6z�n; s� � �Dus;s � Dut;t��Bz � Cz�cn

U7z�n; s� � �Dus;s � Dut;t��Dzcs � Ezct�
� �Dus;t � Dut;s�Fzcn

U8z�n; s� � �Dus;sBz � Dut;tCz�cn

U9z�n; s� � �DusDz � DutEz��;scs �;t ct�

W10z�n; s� � �Dus;s � Dut;t��Azc
2
n � Bzc

2
s � Czc

2
t

� 2Dzcncs � 2Ezcnct�cn

� 2�Dus;tc
2
s � Dut;sc

2
t �Fzcn

�48�

are combinations of the spatial derivatives of the shear
components of the slip. In the special case of the planar
crack on the x1x2-plane, Eq. (46) reduces to a set of
equations equivalent to Eqs. (33) and (34).

Static case
The elastostatic counterpart of Eq. (46) may be obtained
by simply dropping the time dependence:

Tz�s� � ÿ l
4p

Z
C

dS�n� 1

r2
�3�1ÿ p2�W4z � p2U1z � p2U2z

� 2�1ÿ p2�U3z ÿ 3�1ÿ p2�W10z � �2ÿ 3p2�U5z

� �1ÿ p2�U6z � �1ÿ 2p2�U7z ÿ U8z � U9z��n� :
�49�

In the special case of the planar crack on the x1x2-plane,
Eq. (49) reduces to Eqs. (35) and (36).

7
Off-fault stress field
The stress ®eld outside the crack is expressed in a form
parallel to Eq. (46):

Tz�s; t� � ÿ l
4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�ÿ30W4z � 6U1z ÿ 6U2z ÿ 36U3z � 30W10z ÿ 18U5z ÿ 6U6z ÿ 12U7z��n; t ÿ vr=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�ÿ12W4z � 2U1z ÿ 2U2z ÿ 14U3z � 12W10z ÿ 7U5z ÿ 2U6z ÿ 5U7z ÿ U8z � U9z��n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�12p2W4z � �1ÿ 2p2�U1z ÿ �1ÿ 4p2�U2z ÿ 2�1ÿ 8p2�U3z ÿ 12p2W10z � 6p2U5z � 2p2U6z

� 4p2U7z��n; t ÿ r=cL� ÿ l
4pcT

Z
C

dS�n� 1

r
�ÿ2 _W4z ÿ 2 _U3z � 2 _W10z ÿ _U5z ÿ _U7z ÿ _U8z � _U9z��n; t ÿ r=cT�

ÿ l
4pcT

p

Z
C

dS�n� 1

r
�2p2 _W4z � _U1z ÿ �1ÿ 2p2�� _U2z � 2 _U3z� ÿ 2p2 _W10z��n; t ÿ r=cL�

ÿ l
4pc2

T

Z
C

dS�n� 1

r
�D�un�n; t ÿ r=cL�p2Az � �D�usDz � D�utEz��n; t ÿ r=cT�� ; �46�
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rkl�s; t� � ÿ l
4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�ÿ30W4kl � 6U1kl ÿ 6U2kl ÿ 36U3kl � 30W10kl ÿ 18U5kl ÿ 6U6kl ÿ 12U7kl��n; t ÿ vr=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�ÿ12W4kl � 2U1kl ÿ 2U2kl ÿ 14U3kl � 12W10kl ÿ 7U5kl ÿ 2U6kl ÿ 5U7kl ÿ U8kl � U9kl��n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�12p2W4kl � �1ÿ 2p2�U1kl ÿ �1ÿ 4p2�U2kl ÿ 2�1ÿ 8p2�U3kl ÿ 12p2W10kl

� 6p2U5kl � 2p2U6kl � 4p2U7kl��n; t ÿ r=cL� ÿ l
4pcT

Z
C

dS�n� 1

r
�ÿ2 _W4kl ÿ 2 _U3kl � 2 _W10kl

ÿ _U5kl ÿ _U7kl ÿ _U8kl � _U9kl��n; t ÿ r=cT� ÿ l
4pcT

p

Z
C

dS�n� 1

r
�2p2 _W4kl � _U1kl ÿ �1ÿ 2p2�� _U2kl � 2 _U3kl�

ÿ 2p2 _W10kl��n; t ÿ r=cL� ÿ l
4pc2

T

Z
C

dS�n� 1

r
�D�un�n; t ÿ r=cL�p2akl � �D�usdkl � D�utekl��n; t ÿ r=cT�� ; �50�

r11�s; t� � ÿ l
4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�12Du3;1c1�5c2
3 ÿ 1� � 12Dua;ac3�5c2

1 ÿ 1���n; t ÿ vr=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�4Du3;1c1�6c2

3 ÿ 1� � 4Dua;ac3�6c2
1 ÿ 1� ÿ 2Du1;1c3��n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�ÿ4p2Du3;1c1�6c2

3 ÿ 1� � 2�1ÿ 2p2�Du3;2c2 ÿ 2Dua;ac3�12p2c2
1 � 1ÿ 4p2���n; t ÿ r=cL�

ÿ l
4pcT

Z
C

dS�n� 1

r
�4D _u3;1c1c

2
3 � 4D _ua;ac3c

2
1 ÿ 2D _u1;1c3��n; t ÿ r=cT�

ÿ l
4pcT

p

Z
C

dS�n� 1

r
�ÿ4p2D _u3;1c1c

2
3 � 2�1ÿ 2p2�D _u3;2c2 ÿ 2D _ua;ac3�2p2c2

1 � 1ÿ 2p2���n; t ÿ r=cL�

ÿ l
4pc2

T

�1ÿ 2p2�
Z
C

dS�n� 1

r
D�u3�n; t ÿ r=cL� �51�

r12�s; t� � ÿ l
4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�6�Du3;1c2 � Du3;2c1��5c2
3 ÿ 1� � 12Du1;2c3�5c2

1 ÿ 1� � 12Du2;1c3�5c2
2 ÿ 1���n; t ÿ vr=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�2�Du3;1c2 � Du3;2c1��6c2

3 ÿ 1� � Du1;2c3�24c2
1 ÿ 5� � Du2;1c3�24c2

2 ÿ 5���n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�ÿ�Du3;1c2 � Du3;2c1��12p2c2

3 � 1ÿ 4p2� ÿ 4p2Du1;2c3�6c2
1 ÿ 1� ÿ 4p2Du2;1c3�6c2

2 ÿ 1���n; t ÿ r=cL�

ÿ l
4pcT

Z
C

dS�n� 1

r
�2�D _u3;1c2 � D _u3;2c1�c2

3 � D _u1;2c3�4c2
1 ÿ 1� � D _u2;1c3�4c2

2 ÿ 1���n; t ÿ r=cT�

ÿ l
4pcT

p

Z
C

dS�n� 1

r
�ÿ�D _u3;1c2 � D _u3;2c1��2p2c2

3 � 1ÿ 2p2� ÿ 4p2�D _u1;2c
2
1 � D _u2;1c

2
2�c3��n; t ÿ r=cL� �52�

where W4kl, U1kl and other similar symbols are de®ned by
equations parallel to Eqs. (47) and (48) where the subscript
z should be replaced by kl and the coef®cients in ma-
juscule Az, Bz etc. should be replaced by those in min-

uscule akl, bkl etc. Of interest here is the special form of
Eq. (50) for the planar 3-D crack lying on the x1x2-plane,
which is given by:

621



These equations were also derived by Aochi, Fukuyama and
Matsu'ura (1999a, b). As c3 ! 0, Eqs. (53) and (54) reduce to
equations equivalent to Eqs. (34) and (33), respectively.
Other components, not listed here, may be obtained by
considering the symmetry between the coordinates x1 and
x2.

Static case
The elastostatic counterpart of Eq. (50) may be obtained
by simply dropping the time dependence:

rkl�s�
� ÿ l

4p

Z
C

dS�n� 1

r2
�3�1ÿ p2�W4kl � p2U1kl � p2U2kl

� 2�1ÿ p2�U3kl ÿ 3�1ÿ p2�W10kl � �2ÿ 3p2�U5kl

� �1ÿ p2�U6kl � �1ÿ 2p2�U7kl ÿ U8kl � U9kl��n� :
�55�

The special form of Eq. (55) for the planar 3-D crack lying
on the x1x2-plane is:

r11�s� � ÿ l
2p

Z
C

dS�n� 1

r2
��1ÿ p2�Du3;1c1�1ÿ 3c2

3�

� �1ÿ 2p2�Du3;2c2 ÿ �1ÿ p2�Dua;ac3�1� 3c2
1�

� Du2;2c3��n� �56�

r12�s� � ÿ l
4p

Z
C

dS�n� 1

r2

�
Du3;1c2 p2 ÿ 3�1ÿ p2�c2

3

� �
� Du3;2c1 p2 ÿ 3�1ÿ p2�c2

3

� �
� Du1;2c3 1ÿ 2p2 ÿ 6�1ÿ p2�c2

1

� �
�Du2;1c3 1ÿ 2p2 ÿ 6�1ÿ p2�c2

2

� �	�n� �57�

r31�s; t� � ÿ l
4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�12Du3;1c3�5c2
3 ÿ 3� � 12Dua;ac1�5c2

3 ÿ 1���n; t ÿ vr=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�2Du3;1c3�12c2

3 ÿ 7� � Dua;ac1�24c2
3 ÿ 5� � Du1;aca��n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�ÿ2Du3;1c3�12p2c2

3 � 1ÿ 8p2� ÿ 4p2Dua;ac1�6c2
3 ÿ 1���n; t ÿ r=cL�

ÿ l
4pcT

Z
C

dS�n� 1

r
�2D _u3;1c3�2c2

3 ÿ 1� � D _ua;ac1�4c2
3 ÿ 1� � D _u1;aca��n; t ÿ r=cT�

ÿ l
4pcT

p

Z
C

dS�n� 1

r
�ÿ2D _u3;1c3�2p2c2

3 � 1ÿ 2p2� ÿ 4p2D _ua;ac1c
2
3��n; t ÿ r=cL�

ÿ l
4pc2

T

Z
C

dS�n� 1

r
D�u1�n; t ÿ r=cT� �53�

r33�s; t� � ÿ l
4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�ÿ12Du3;aca�5c2
3 ÿ 1� � 12Dua;ac3�5c2

3 ÿ 3���n; t ÿ vr=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�ÿ4Du3;aca�6c2

3 ÿ 1� � 2Dua;ac3�12c2
3 ÿ 7���n; t ÿ r=cT�

ÿ l
4p

Z
C

dS�n� 1

r2
�4Du3;aca�6p2c2

3 � 1ÿ 2p2� ÿ 2Dua;ac3�12p2c2
3 � 1ÿ 8p2���n; t ÿ r=cL�

ÿ l
4pcT

Z
C

dS�n� 1

r
�ÿ4D _u3;acac

2
3 � 2D _ua;ac3�2c2

3 ÿ 1���n; t ÿ r=cT�

ÿ l
4pcT

p

Z
C

dS�n� 1

r
�4D _u3;aca�p2c2

3 � 1ÿ p2� ÿ 2D _ua;ac3�2p2c2
3 � 1ÿ 2p2���n; t ÿ r=cL�

ÿ l
4pc2

T

Z
C

dS�n� 1

r
D�u3�n; t ÿ r=cL� : �54�
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r31�s� � ÿ l
4p

Z
C

dS�n� 1

r2
�2�1ÿ p2�Du3;1c3�1ÿ 3c2

3�

� 2�1ÿ p2�Dua;ac1�1ÿ 3c2
3�

ÿ Du2;2c1 � Du1;2c2��n� �58�

r33�s� � ÿ l
2p
�1ÿ p2�

Z
C

dS�n� 1

r2
�Du3;aca�1� 3c2

3�

� Dua;ac3�1ÿ 3c2
3�� : �59�

As c3 ! 0, Eqs. (58) and (59) reduce to Eqs. (36) and (35),
respectively.

8
Off-fault displacement field
The displacement ®eld outside the crack is obtained by
substituting the explicit form of the Green's functions into
Eq. (40):

where

U11k�n; s� � Dunnkcn

U12k�n; s� � Dun�skcs � tkct�
W13k�n; s� � �U11k � U12k�c2

n � Dunc
2
nck

U14k�n; s� � Dus�nkcs � skcn� � Dut�nkct � tkcn�

W15k�n; s� � �Duscs � Dutct�cnck �61�

are combinations of the slip components. Of interest here
is the special form of Eq. (60) for the planar 3-D crack
lying on the x1x2-plane, which is given by:

uk�s; t� � ÿ 1

4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�30W13k ÿ 18U11k ÿ 6U12k � 30W15k ÿ 6U14k��n; t ÿ vr=cT�

ÿ 1

4p

Z
C

dS�n� 1

r2
�12W13k ÿ 8U11k ÿ 2U12k � 12W15k ÿ 3U14k��n; t ÿ r=cT�

ÿ 1

4p

Z
C

dS�n� 1

r2
�ÿ12p2W13k ÿ �1ÿ 8p2�U11k ÿ �1ÿ 4p2�U12k ÿ 12p2W15k � 2p2U14k��n; t ÿ r=cL�

ÿ 1

4pcT

Z
C

dS�n� 1

r
�2 _W13k ÿ 2 _U11k � 2 _W15k ÿ _U14k��n; t ÿ r=cT�

ÿ 1

4pcT
p

Z
C

dS�n� 1

r
�ÿ2p2 _W13k ÿ �1ÿ 2p2�� _U11k � _U12k� ÿ 2p2 _W15k��n; t ÿ r=cL� ; �60�

u1�s; t� � ÿ 1

4p

Z
C

dS�n� 1

r2

Zp

1

dv � v�6Du3c1�5c2
3 ÿ 1� � 6Du1c3�5c2

1 ÿ 1� � 30Du2c1c2c3��n; t ÿ vr=cT�

ÿ 1

4p

Z
C

dS�n� 1

r2
�2Du3c1�6c2

3 ÿ 1� � 3Du1c3�4c2
1 ÿ 1� � 12Du2c1c2c3��n; t ÿ r=cT�

ÿ 1

4p

Z
C

dS�n� 1

r2
�ÿDu3c1�12p2c2

3 � 1ÿ 4p2� ÿ 2p2Du1c3�6c2
1 ÿ 1� ÿ 12p2Du2c1c2c3��n; t ÿ r=cL�

ÿ 1

4pcT

Z
C

dS�n� 1

r
�2D _u3c1c

2
3 � D _u1c3�2c2

1 ÿ 1� � 2D _u2c1c2c3��n; t ÿ r=cT�

ÿ 1

4pcT
p

Z
C

dS�n� 1

r
�ÿD _u3c1�2p2c2

3 � 1ÿ 2p2� ÿ 2p2D _u1c3c
2
1 ÿ 2p2D _u2c1c2c3��n; t ÿ r=cL� �62�
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The component u2 may be obtained by considering the
symmetry between the coordinates x1 and x2.

Static case
The elastostatic counterpart of Eq. (60) may be obtained
by simply dropping the time dependence:

uk�s� � 1

4p

Z
C

dS�n� 1

r2
�3�1ÿ p2�W13k � p2U11k

ÿ p2U12k � 3�1ÿ p2�W15k � p2U14k��n� : �64�
The special form of Eq. (64) for the planar 3-D crack lying
on the x1x2-plane is:

u1�s� � 1

4p

Z
C

dS�n� 1

r2
�3�1ÿ p2��Du3c3 � Duaca�c1c3

� p2�Du1c3 ÿ Du3c1���n� �65�

u3�s� � 1

4p

Z
C

dS�n� 1

r2
�Du3c3 � Duaca��n�

� �3�1ÿ p2�c2
3 � p2� : �66�

9
Discussion and conclusion
In the present article, we have enlarged Fukuyama and
Madariaga's (1998) integration by parts technique and
combined it with Tada and Yamashita's (1997) local Car-
tesian coordinate system, to derive, for the ®rst time, a non-
hypersingular time-domain BIE for the 3-D non-planar
crack in a fully explicit form. We have given not only the
BIE describing the traction-slip relation on the crack, but
also similar expressions for the stress and displacement
®elds off the fault. Although we are not going to detail it in
this article, we have con®rmed that, in the special case in
which the crack con®guration is independent of one co-
ordinate, all the equations that we have derived reduce to
corresponding equations given in the Tada and Yamashita

(1997) paper on the 2-D non-planar crack theory. This
con®rms the correctness of our algebra.

The present study completes the set of non-hypersin-
gular BIEM theory for crack dynamics, that is based on the
displacement discontinuity method, the time-domain re-
presentation and the integration by parts technique. In
practical implementation to non-planar crack analysis,
however, direct use of the non-planar crack equation is
expected to face many obstacles, not least the dif®culty of
meshing the curved surface and the extremely complex
expression of the equation. This fact favors the approach
of Aochi, Fukuyama and Matsu'ura (1999a, b), who pro-
pose to numerically model 3-D non-planar crack dynamics
problems by approximating the curved crack surface by a
patchwork of small planar elements. In their approach, the
in¯uence of slip on one planar element on the traction on
another element is to be evaluated by way of simpler
equations (51)±(54), which are special cases of the more
complicated equation (46) or (50).

In approximating a curved crack surface by a patchwork
of small planar elements, however, there is a point that
requires attention. The use of piecewise-constant inter-
polation is fairly common in the discretization of the slip
distribution on the crack surface. Tada and Yamashita
(1996) pointed out that, when a curved crack is modeled as
a series of smaller planar elements and when piecewise-
constant interpolation is applied to slip, slip ``gets stuck'' at
spurious joints of differently oriented elements and results
in a smaller expected slip than if the crack is modeled as a
series of curved elements that are smoothly joined. Seelig
and Gross' (1997) modeling method, which they put to use
in the 2-D case, hints at one way to prevent spurious
suppression of slip in such a case. They numerically
modeled shear slip on a non-planar crack, in the same way
as they would have modeled a traction-free open crack that
was allowed to slip both in the shear and opening modes.
They then numerically penalized the negative opening
component of the slip, which would have meant material
penetration. If we follow their method and penalize both
positive and negative opening components of slip, this
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approach can be used to model pure shear cracks, free from
the spurious suppression of slip at element joints.

Our present theoretical study thus marks a major step
toward a more realistic 3-D numerical analysis of earth-
quake fault dynamics. With a view to future numerical
modeling, Aochi, Fukuyama and Matsu'ura (1999a, b)
derived a set of discretization kernels for Eqs. (51)±(54),
or the stress components that would be expected in re-
sponse to a uniform slip of a unit slip-rate taking place
during a unit length of time on a quandrangular fault
patch of a unit area. These discrete kernels will be used
when one numerically analyzes the behavior of a 3-D non-
planar crack, approximating the crack by a patchwork of
small planar elements and based on the piecewise-constant
approximation for the slip-rate. This or other sorts of
practical application of the 3-D non-planar crack dy-
namics theory are much awaited, for a better under-
standing of the seismic rupture phenomena on faults with
complex geometry.

Appendix A: 3-D Green's functions
The explicit forms of the displacement Green's functions
of 3-D elasticity theory Gij and its ®rst-order spatial deri-
vatives are:
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for the elastodynamic case. In the elastostatic case, they
are
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Appendix B: Proof to Eq. (30)
Fukuyama and Madariaga (1995) derived their Eq. (D1),
or (30) of the present article, in the following way. De®ne a
2-D polar coordinate system �r;u� on the surface of a
plane crack, with the origin at x and the moving radius
nÿ x. From the relation
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which was to be demonstrated.
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