Post-seismic motion after 3 Chilean megathrust earthquakes: A clue for a linear asthenospheric viscosity

H. Boulze, L. Fleitout, E. Klein and C. Vigny
${ }^{1}$ Laboratoire de géologie - CNRS UMR 8538, École normale supérieure - PSL University, Paris, France

Supporting information

Contents

S1 Continuous GPS stations 2
S2 Details about the data analysis 2
S2.1 Correction from the pre-seismic trend 2
S2.2 Co-seismic offset for Iquique earthquake 3
S2.3 Uncertainties 4
S3 Co-seismic offsets 4
S4 Impact of afterslip 5
S5 Finite element mesh and models 6
S6 The post/co ratios predicted by scaling laws and finite-element models 6
S6.1 Scaling laws 6
S6.1.1 Justification of Eq. 2 7
S6.1.2 Justification of Eq. 4 7
S6.2 Illustration in the case of two homothetic earthquakes: predicted time-series 8
S6.3 von Mises stress in the asthenosphere predicted for two non-homothetic earthquakes 9
S7 Tables 9
References 12

S1 Continuous GPS stations

Figure S1: Continuous GPS stations used for Iquique (A), Illapel (B) and Maule (C) earthquakes. Distances from the trench are computed between orange points on the fault and the position of the stations. Several points are used for Maule because the co-seismic slip is more extended in latitude than for the other earthquakes: The distance from the trench is then computed between the station and the closest point.

S2 Details about the data analysis

S2.1 Correction from the pre-seismic trend

To estimate the cumulative post-seismic deformation, we remove a pre-seismic trend inverted by least squares. The period used to determine the trend is different for each station. In general, a good estimation requires more than 2.5 years of data to properly handle seasonal variations (Blewitt et Lavallée, 2002). However, due to the complexity of the GPS data (e.g. gaps, discontinuities, post-seismic signal before the earthquake), this amount of data can be difficult to obtain. For example, it is a delicate task to estimate a pre-seismic trend with more than 2.5 years for Illapel because some stations in the far-field are impacted by significant post-seismic deformation induced by the Maule earthquake.

Many stations have been installed after the Maule earthquake: CRRL, RGAO, LEMU, ILOC, LMHS, QLAP, NAVI, CHML. For these stations, we interpolate the Maule pre-seismic trend by using 34 continuous GPS stations located between $\left[-75^{\circ} \mathrm{E},-50^{\circ} \mathrm{E}\right]$ in longitude and $\left[-45^{\circ} \mathrm{N},-30^{\circ} \mathrm{N}\right]$ in latitude (Fig. S2).

Figure S2: Interpolation of the pre-seismic velocity in ITRF2014 for stations installed after the Maule earthquake (blue vectors) or with less than 2 years of data before Maule.

S2.2 Co-seismic offset for Iquique earthquake

The Iquique earthquake is followed two days after by an important $M_{w} 7.7$ aftershock. In near and mid-fields, cGPS time-series clearly show a co-seismic offset due to the aftershock. To the south, the aftershock co-seismic offset is higher or of the same order as the mainshock offset(Fig. S3). Because we measure the post-seismic motion due to both earthquakes, we need to take into account the aftershock in post/co ratios. Thus, the Iquique co-seismic values that we use to plot the post/co ratios are based on the displacement at $t_{E Q}+3$ days and takes into account the sum of the $M_{w} 8.1$ mainshock and the $M_{w} 7.7$ aftershock.

Figure S3: PB01 time-serie (E) where the co-seismic displacement induced by the Iquique $M_{w} 7.7$ aftershock is clearly visible and higher than that of the mainshock. PB01 is located closer to the aftershock than to the mainshock (see Fig. S1). $t_{E Q}$ depicts the date of the earthquake.

S2.3 Uncertainties

- Pre-seismic trends: GPS velocity uncertainties depend on a combination of different kind of noises: white, flicker, random-walk, seasonal, ... Theses noises are variable, depending on the station monument quality (rocks, concrete, ...) and are also affected by data gaps and instrumental jumps. A complete quantification of the noise model of a particular data set is a difficult task, beyond the scope of this paper. A common way of estimating the uncertainty level of displacements inferred from noisy time series is to simply re-scale the formal uncertainty (which is well represented by the short term white noise) by a factor that range between 3 and 10 depending on the noise model and the station monuments behavior (e.g. Zhang et al., 1997; Mao et al., 1999; Bock et Melgar, 2016). Here we chose an intermediate factor of 5 which seemed appropriate to our stations and data processing: formal uncertainties re-scaled by 5 , "match" long term noise at most stations. Re-scaling formal uncertainties is an oversimplification, but it is realistic and has the advantage of preserving relative uncertainties: some stations are better than others.
- Co-seismic offsets: The uncertainty $\sigma_{c o}$ associated with the value of the co-seismic offset is assumed equal to $2 * \mathrm{RMS}$ where RMS is the root mean square computed over the period $\left[t_{E Q}-1 y r, t_{E Q}+1 y r\right]$ with a 7 days sliding window. $t_{E Q}$ depicts the date of the earthquake. When the co-seismic offset is computed from our finite element models, the uncertainty is set to 0 .
- Cumulative post-seismic displacements: The uncertainty $\sigma_{p o s t}$ associated with the cumulative post-seismic displacement is set to two times the uncertainty on the pre-seismic velocity (see Section S2.1 for explanations): $\sigma_{\text {post }}=2 \times \sigma_{\text {pre }}$.
- post/co ratios: The uncertainty $\sigma_{\frac{p o s t}{c o}}$ associated with the post/co ratios is then defined as below:

$$
\begin{equation*}
\sigma_{\frac{p o s t}{c o}}=\frac{p o s t}{c o} \times \sqrt{\left(\frac{\sigma_{c o}}{c o}\right)^{2}+\left(\frac{\sigma_{p o s t}}{p o s t}\right)^{2}} \tag{Eq.S1}
\end{equation*}
$$

S3 Co-seismic offsets

Figure S4: Co-seismic offsets (cm) for Maule (red), Iquique (blue) and Illapel (green) earthquakes. Note different scales for near-, mid- and far-fields.

For most stations, the co-seismic offset is measured on the time-series. But some stations did not record the earthquake (e.g. gaps, station installed shortly after the earthquake). In this case, we estimate the co-seismic offset from the co-seismic slip on the interface inverted in two previous studies: Klein et al. (2016) for Maule (CRRL, RGAO, LEMU, ILOC, LMHS, QLAP, NAVI, CHML) and Klein et al. (2017) for Illapel (EMAT, UCOR).

S4 Impact of afterslip

Near and mid-field post-seismic displacements are known to be highly impacted by afterslip during several years after the earthquake. Some studies have inferred long durations for afterslip, up to several decades (Suito et Freymueller, 2009), but recent studies relative to Maule (Klein et al., 2016), Illapel (Xiang et al., 2021) and Iquique (Hu et al., 2021), indicate that most of the afterslip occurs during the two first years after the earthquakes.

In near and mid-field, even though the amplitudes of 2-5 years post/co ratios are smaller than for 0-5 years, they are still similar for the three earthquakes (Fig. S5). Understandably, uncertainties and scattering are larger when considering a time period over which displacements are smaller (years 2-5, Fig. S5-B versus years 0-2, Fig. S5-A). This effect is magnified in far-field (beyond $800-1000 \mathrm{~km}$) where deformations become very small. The apparent difference in trends between Maule's (red symbols) and Illapel's ratios (green symbols) that shows in far field in Fig. S5-B is most probably an artefact. First, uncertainties are larger for Illapel smaller displacements and the scattering of the 3 points around 1100 km reflects this. Second, the perception of a decreasing trend is mostly driven by one point : the last one, which has the highest uncertainty. Last, Illapel's ratios are contaminated by the post-seismic deformation generated by the Maule earthquake, which occurred 5 years before. This contamination comes from the fact that during the period used to estimate the preseismic and the postseismic trend of Illapel, the signal coming from Maule is non negligible and not linear, at least according to the model of Klein et al. (2016). This affects the estimation of Illapel's post-seismic total displacement, yielding slightly smaller post/co ratios. This effect is present over both time periods, but highlighted for the $2-5 y r s$ period (Fig. S5-B vs. S5-A).

Figure S5: Evolution of the post/co ratios with distance from the trench over 0-2 yrs (A) and over 2-5 years (B). Dots depict observed displacements. Squares depict displacements for which some part of the time-serie was missing.

S5 Finite element mesh and models

Figure S6: Finite element mesh developed by Klein et al. (2016) used in this paper. Coastlines are in white, the trench is in red and the profile P is in yellow.

Figure S7: Sketch of a 2D section of the model.

For the numerical tests, we use the mesh developed by Klein et al. (2016) (Fig. S6). The geometry of the interface and the boundary conditions are exactly the same as in (Klein et al., 2016). Contrary to Klein et al. (2016) who use Burgers rheology and lateral viscosity variations (wedge and channel), we use a uniform viscosity everywhere (Fig. S7). We also suppress the contribution of afterslip which is taken into account in Klein et al. (2016). According to seismic tomography of Celli et al. (2020), most of the GNSS stations we use are far from the thicker Brasilian craton. So, our simplistic model uses a lithosphere only 70 km thick and an asthenosphere extending from 70 to 270 km depth. Indeed, the seismic velocity at a depth of 100 km over the studied area is similar to that of the nearby old South-Atlantic ocean (Celli et al., 2020). For the Newtonian case $(n=1)$, we use a linear-Maxwell rheology (no Burgers) with a viscosity of $4.75 \times 10^{18} \mathrm{~Pa}$.s for the asthenosphere. For the power-law case, we use Eq. 3 of the paper with $n=3 . C$ is chosen to obtain approximately the same maximum post/co ratio for Maule earthquake, for the Newtonian and power-law cases: $C=4.6 \times 10^{-29} \mathrm{~Pa}^{-3} \cdot \mathrm{~s}^{-1}$. For elastic parameters in the mantle and continental crust, a detailed description is provided in the supplements of Klein et al. (2016).

S6 The post/co ratios predicted by scaling laws and finite-element models

S6.1 Scaling laws

Computing the post-seismic deformation after an earthquake only involves an initial state, provided by the co-seismic slip and the visco-elastic mechanical equations i.e. the equilibrium equation and the constitutive visco-elastic equations. Note that the visco-elastic equations (equilibrium and Maxwell, Burgers or generalized Burgers constitutive equations) are all linear as long as the viscosities involved in the Maxwell or Burgers laws are linear. This justifies Eq. 1.

In the following sections, we develop the justification of Eq. 2 and Eq. 4.

S6.1.1 Justification of Eq. 2

The interplay between time and viscosity is well known in visco-elastic problems where the results are very often given uniquely as a function of a non-dimensional time $\left(t / \tau_{M}\right)$ where τ_{M} is the Maxwell time (Savage et Prescott, 1978). This simply derives from the visco-elastic constitutive equations. For a Maxwell visco-elastic solid, this equation writes, for Earthquake E2:

$$
\begin{equation*}
\frac{d \varepsilon_{i j}}{d t}=\frac{1}{9 K} \delta_{i j} \frac{d \sigma_{k k}}{d t}+\frac{1}{2 \mu}\left(\frac{d \tau_{i j}}{d t}\right)+\frac{1}{2 \eta_{2}}\left(\tau_{i j}\right) \tag{Eq.S2}
\end{equation*}
$$

where we name $\varepsilon_{i j}$ the elements of the strain tensor, $\sigma_{i j}$ the elements of the full stress tensor and $\tau_{i j}$ the elements of the deviatoric stress tensor. K is the bulk modulus, μ the shear modulus and η_{2} the viscosity at a given point in the mantle. To establish Eq. 2, we consider a same earthquake (same co-seismic slip) and same elastic properties (i.e. same initial stress and strain) but the viscosity for the case E1 is possibly spatially variable but everywhere multiplied by k with respect to E2 $\left(\eta_{1}=k \eta_{2}\right)$, where the rheology is here assumed to be linear i.e. η_{1} and η_{2} independent upon the deviatoric stress.

For Earthquake E1, the constitutive equation writes:

$$
\begin{equation*}
\frac{d \varepsilon_{i j}}{d t}=\frac{1}{9 K} \delta_{i j} \frac{d \sigma_{k k}}{d t}+\frac{1}{2 \mu}\left(\frac{d \tau_{i j}}{d t}\right)+\frac{1}{2 \eta_{1}}\left(\tau_{i j}\right) \tag{Eq.S3}
\end{equation*}
$$

This viscoelastic equation is simply the time derivative of the Hooke's law where the term $\frac{1}{2 \mu}\left(\frac{d \tau_{i j}}{d t}\right)$ has been replaced by $\frac{1}{2 \mu}\left(\frac{d \tau_{i j}}{d t}\right)+\frac{1}{2 \eta_{1}}\left(\tau_{i j}\right)$. It is equivalent to the equation used for example by Peltier (1974). Now in Eq. S3, we make a change of variables involving the time $\mathrm{t}: t^{\prime}=t / k$ Then Eq. S3 becomes exactly equal to Eq. S2 at any point in space except that t^{\prime} replaces t.

The equations for solving the two problems are exactly the same and the initial and boundary conditions are the same. The solution of the two problems is then the same. Simply concerning the solution in the case of viscosity η_{1}, the post/co obtained for a time t^{\prime} after solving equation $S 3$ is in fact the solution for a 'real' time $t=k t$ '. Note that the same change of variables would apply as well in the case of a Burgers rheology as long as the viscosities of the Kelvin-Voigt element are also in a ratio k.

S6.1.2 Justification of Eq. 4

Now let us consider two homothetic earthquakes but a same power-law rheology corresponding to Eq. 3. We assume that the co-seismic slip of E2 is λ times the slip of E1. There, the initial conditions differ as the initial strains and stresses for E2 are λ times the initial strains and stresses for E1. The viscosities are also different as they depend upon the amplitude of the deviatoric stress. The constitutive equation in a Maxwell case writes:

$$
\begin{equation*}
\frac{d \varepsilon_{i j}}{d t}=\frac{1}{9 K} \delta_{i j} \frac{d \sigma_{k k}}{d t}+\frac{1}{2 \mu}\left(\frac{d \tau_{i j}}{d t}\right)+\left(C J_{2}(\overline{\bar{\sigma}}) \tau_{i j}\right) \tag{Eq.S4}
\end{equation*}
$$

as $C . J_{2}(\overline{\bar{\sigma}})$ is equal to $\frac{1}{2 \eta_{e f}}$ where $\eta_{e f}$ is the effective viscosity in a power-law case. This equation is valid both for Earthquake 1 and Earthquake 2.

However, the related initial conditions are different. Concerning Earthquake E1, we make the following change of variables in Eq. S4: $\left(\epsilon_{i j}\right)_{1}^{\prime}=\lambda\left(\epsilon_{i j}\right)_{1},\left(\sigma_{i j}\right)_{1}^{\prime}=\lambda\left(\sigma_{i j}\right)_{1}$ and $t^{\prime}=t / \lambda^{2}$ where the subscript 1 refers to strain rates or stresses related to Earthquake 1. Then Eq. S4 becomes:

$$
\begin{equation*}
\frac{d\left(\varepsilon_{i j}\right)_{1}^{\prime}}{d t^{\prime}}=\frac{1}{9 K} \delta_{i j} \frac{d\left(\sigma_{k k}\right)_{1}^{\prime}}{d t^{\prime}}+\frac{1}{2 \mu}\left(\frac{d\left(\tau_{i j}\right)_{1}^{\prime}}{d t^{\prime}}\right)+\left(C J_{2}(\overline{\bar{\sigma}})_{1}^{\prime}\left(\tau_{i j}\right)_{1}^{\prime}\right) \tag{Eq.S5}
\end{equation*}
$$

Eq. S5 is exactly the same as Eq. S4 but now, the initial condition in σ_{1}^{\prime} and ϵ_{1}^{\prime} is the same as the condition in σ and ϵ for Eq. S4 and earthquake E2. The two problems have then exactly the same solution. Simply, after getting the results by solving the problem for Earthquake E2 using equation S4, the displacements will have to be divided by λ and the times multiplied by λ^{2} to get the solution for earthquake E1.

S6.2 Illustration in the case of two homothetic earthquakes: predicted time-series

Figure S8: Co-seismic plus post-seismic displacements predicted by a model with a power-law viscosity at 2 cGPS stations for two fictive earthquakes: $M_{w} 8.1$ E1 from Fig. 3A (blue) and the fictive $M_{w} 8.8$ E2 from Fig. 3B (red). The time-series predicted by the power-law model differ strongly between large and smaller earthquakes. This can be set against the observations of Fig. 2B and Fig. 2C which show similar post/co time-series for earthquakes of very different magnitudes.

S6.3 von Mises stress in the asthenosphere predicted for two non-homothetic earthquakes

Figure S9: A-Fictive $M_{w} 8.1$ co-seismic slip distribution (left) and its associated von Mises stress (Pa) after the earthquake (right). B-Maule co-seismic slip distribution (Klein et al., 2016) (left) and its associated von Mises stress (Pa) after the earthquake (right). A\&B-von Mises stress is represented along the profile P. Note that the von Mises scale is logarithmic.

S7 Tables

Table 1: East component: Summary of the methods and values obtained to obtain the post/co ratios over 5 years. site: name of the continuous GPS station; on/lat: longitude and latitude of the site; dist: distance from the trench of the site; EQ: name of the earthquake. Pre-seismic trend- period: amount of years before earthquake used to determine the pre-seismic velocity; method: data for least squares estimation and model for interpolation; value: value of the pre-seismic velocity; std: uncertainty associated with the velocity. Co-seismic- method. estimation made with data or model (finite element model); value: value of the the cumulative post-seismic displacement; std: uncertainty associated with the cumulative post-seismic displacement

References

Blewitt, G. et Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth, 107(B7):ETG 9-1-ETG 9-11.

Bock, Y. et Melgar, D. (2016). Physical applications of GPS geodesy: a review. Reports on Progress in Physics, 79(10):106801.

Celli, N., Lebedev, S., Schaeffer, A., Ravenna, M. et Gaina, C. (2020). The upper mantle beneath the south atlantic ocean, south america and africa from waveform tomography with massive data sets. Geophysical Journal International, 221:178-204.

Hu, Z., Hu, Y. et Bodunde, S. S. (2021). Viscoelastic relaxation of the upper mantle and afterslip following the 2014 mw8.1 iquique earthquake. Earthquake Research Advances, 1(1):100002.

Klein, E., Fleitout, L., Vigny, C. et Garaud, J. (2016). Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile). Geophysical Journal International, 205(3):1455-1472.

Klein, E., Vigny, C., Fleitout, L., Grandin, R., Jolivet, R., Rivera, E. P. et Métois, M. (2017). A comprehensive analysis of the illapel 2015 mw8.3 earthquake from gps and insar data. Earth and Planetary Science Letters, 469:123-134.

Mao, A., Harrison, C. G. A. et Dixon, T. H. (1999). Noise in gps coordinate time series. Journal of Geophysical Research: Solid Earth, 104(B2):2797-2816.

Peltier, W. (1974). The impulse response of a maxwell earth. Reviews of Geophysics, 12(4):649-669.
Savage, J. C. et Prescott, W. H. (1978). Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research: Solid Earth, 83(B7):3369-3376.

Suito, H. et Freymueller, J. T. (2009). A viscoelastic and afterslip postseismic deformation model for the 1964 alaska earthquake. Journal of Geophysical Research: Solid Earth, 114(B11).

Xiang, Y., Yue, J., Jiang, Z. et Xing, Y. (2021). Spatial-temporal properties of afterslip associated with the 2015 Mw 8.3 Illapel earthquake, Chile. Earth, Planets and Space, 73(1):27.

Zhang, J., Bock, Y., Johnson, H. O., Fang, P., Williams, S. D. P., Genrich, J. F., Wdowinski, S. et Behr, J. (1997). Southern california permanent gps geodetic array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research, 102:18035-18055.

