RIGID PLATE TECTONICS

- Plate definition
- Plate motion : Euler pole
- Geological model : Nuvel-1A
- Geodetic model : ITRF
- Rigid plate rotations
- Plate deformation : strain and rotation tensors

World seismicity

The Earth surface is cut by «lines» of earthquakes, separating quite areas, i.e. plates. GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Plate geometry and plate tecctonics

Pacific Eurasia **North America South America Africa Antarctica** India-Australia Nazca Philippine Arabia Caraibe Coco

There are 12 main plates and they move : it is **plate tectonics**

Rotation on a sphere

On a sphere, any translation at the surface is in fact a rotation about an axis crossing the Earth from its center to its surface.

Finding a pole

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Effect of velocity uncertainty

Slightly different velocities can give very different poles

Or reverse :

Very different poles can give quite similar velocities

Pole positions don't matter. **only velocities do !!!!**

Geological model : how it works

Geological model : how it works

Rates : generation of oceanic crust and sea floor magnetic anomalies

Rates : Vine and Matthews hypothesis

Rates : uncertainties from magnetic time scale

Figure 1. Comparison since 4.0 Ma of the geomagnetic reversal time-scale used here (Harland *et al.* 1982) with the time-scale used by Chase (1978) and Minster & Jordan (1978) (Talwani *et al.* 1971). We determined rates by seeking the best fit to the centre of anomaly 2A, which is 2 per cent older in the Harland *et al.* time-scale than in the Talwani *et al.* time-scale.

Geological model : how it works directions

NP 8=900 X PANY STOC Δ PBE

PARENT TREND

Figure 4-3. Apparent and true trends of transform system offset by short ridge segments.

Figure 4-1.

Locating an Euler pole \mathbf{E} from the trends Tof transforms. Lines nearly intersecting at E are great circles perpendicular to the transforms.

Figure 4-2. Euler pole E is on the great circle perpendicular to the trend of the transform. \mathbf{P}_{BE} is the pole of the great circle **<B**, **E>**.

SP

GS of CAS – Geodesy & Geodynamics – Bei

Geological model : real data

Transform faults azimuths

Lon	lat az	imuth
15.3	-45.8	95.5
12.6	-44.6	90.0
12.2	-43.8	90.0
10.8	-42.3	91.5
7.8	-37.0	92.0
4.0	-32.0	90.0
1.0	-28.0	84.0
-0.8	-21.5	82.0
-1.2	-14.5	76.0
-7.0	-12.5	77.7
-11.5	-14.0	77.5
-32.3	-14.0	80.0
-34.2	-14.8	80.0
-54.2	-2.0	65.0

Geological model : real data

Spreading rates

Geological model : real data

Slip vector azimuths

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Geological model : Nuvel-1A, Demets et al., 1990

Current plate motions, Geophys. Journal. Int., 101, 425-478, 1990

Around 1200 slip vector azimuth, transform fault orientations and spreading rates are compiled in one model for plate motion

Geological model : data table

Table 3. (continued)
 Solution
 Science
 < 1.0 24.4 0.089 n24e 24.4 0.090 n24e Rabinowitz & Schouten (1985) Rona & Gray (1980) -1.2
 2130
 -0.400
 22.5
 2
 -0.400
 0.200
 noise
 Read Gray (1980)

 2150
 -4.50
 22.5
 2
 2.46
 0.000
 noise
 Read Gray (1980)

 2150
 -4.61
 21
 2.46
 0.000
 noise
 Read Gray (1980)

 2150
 -4.50
 25.4
 2.000
 noise
 Read Gray (1981)

 2100
 -4.50
 25.4
 2.52
 0.0007
 noise
 noise d Gray (1981)

 2100
 -4.500
 25
 2.52
 1.0007
 noise
 Robioswist d Schuites (1983)

 2180
 -5.00
 25
 2
 2.100
 noise
 Robioswist d Schuites (1983)
 -11.3 -32. -34.2 Africa-North America: Transform Azimuths -54
 35.20
 -35.60
 104.5
 2
 103.6
 0.203

 33.70
 -38.70
 104.5
 2
 103.4
 0.216

 30.00
 -42.40
 101.5
 3
 102.9
 0.100
 Rost et al (1984) Roett et al. (1984) Afri Rost et al. (1984) 23.70 -45.70 98.0 2 102.2 0.220 Roest et al. (1984) & 15. Pockalny et al. (1988) 15. 15 Africa-North America: Slip Vectors 35 43 .36 03 102.0 20 103.6 0.002 CMT 4.29.85 12 35.41 -36.01 101.0 10 103.7 0.008 35.35 -36.08 100.0 10 103.7 0.008 CMT 6.06.82 CMI 6.06.82 Bergman & Solomon (1988) CMT 7.14.80 35.14 -35.45 101.0 15 103.6 0.004 33.79 -38.64 101.0 10 103.4 0.009 33.78 -38.46 102.0 15 103.4 0.004 33.69 -38.60 103.0 15 103.4 0.004 Bergman & Solomon (1988) CMT 5.07.84 CMT 5.03.84 28.74 -43.58 91.0 20 102.8 0.002 23.83 -45.94 100.0 10 102.2 0.009 Engeln et al. (1986) Bergman & Solomon (1988) 23.36 -45.57 100.0 10 102.2 0.099 23.81 -45.44 106.0 15 102.2 0.094 23.74 -45.17 102.0 15 102.2 0.094 Bergman & Solomon (1988) CMT 11 28 81 CMT 3.12.77 Africa-Eurasia: Transform Azimuths 36.90 -23.50 257.0 5 260.2 0.187 37.00 -22.60 265.0 3 263.3 0.399 37.10 -21.70 265.0 3 266.3 0.384 37.10 -20.50 -90.0 7 270.4 0.098 Laughton et al. (1972 Laughton et al. (1972) Laughton et al. (1972) Laughton et al. (1972) Africa-Eurasia: Slip Vectors 37.75 -17.25 -89.0 25 -79.2 0.022 CMT 10.17.83 31.22 -14.93 -50.0 25 -71.5 0.042 36.96 -11.84 267.0 25 -62.0 0.066 36.01 -10.57 -35.0 25 -57.0 0.092 Grimison & Chen (1986) Grimison & Chen (1986) Fukao (1973) Grimison & Chen (1986) Grimison & Chen (1986) 35.99 -10.34 -60.0 25 -56.3 0.098 36.23 -7.61 -35.0 25 -49.8 0.104 Africa-South America: Spreading Rates
 -6.00
 -11.70
 33
 6
 34.1
 0.018
 n10w
 wax Andel et al. (1973)

 7.60
 -13.40
 35
 6
 34.4
 0.018
 n10w
 wax Andel et al. (1973)

 8.00
 -13.50
 34
 2
 34.4
 0.018
 n10w
 wax Andel et al. (1973)

 4.00
 -13.30
 34
 2
 34.4
 0.018
 n00w
 wax Andel et al. (1973)

 4.00
 -13.30
 33
 6
 34.5
 0.018
 n08w
 wax Andel et al. (1973)
 9.20 -13.20 39 6 34.6 0.017 n08w van Andel et al. (1973) -10.50 -13.00 34 3 34.8 0.068 n09w Brozena (1986) -10.50 -13.00 34 3 -13.50 -14.50 36 4 34.8 0.068 n09w Brozena (1986) 35.0 0.034 n19w Brozena (1986) -15.00 -13.50 34 2 -17.00 -14.00 36 3 -24.90 -13.50 37 6 35.4 0.136 n16w Brozena (1986) 35.6 0.061 n10w Brozena (1986) 34.5 0.013 m05n Dickton et al. (1968) 35.7 0.053 n05e Dickson et al. (1968) 35.1 0.051 n00e Dickson et al. (1968) -28.00 -13.00 36 -30.50 -13.50 -31.10 -13.40 35 5 -31.70 -13.40 34 3 35.7 0.019 n17w Welch et al. (1986) 35.7 0.052 n14w Welch et al. (1986) 35.6 0.051 n14w Welch et al. (1986) 34 35 3 -33.00 -14.50 -33.90 -14.60 -38.50 -17.00 35.6 0.029 n10w Welch et al. (1986) 35.1 0.013 n10w Dickson et al. (1968) 34 36 6 -40.00 -16.00 36 3 34.7 0.051 n05w Loomis & Morgan (1973) -42.00 -16.00 32 34.4 0.029 n05w Dickson et al. (1968)
 34.2 0.052 n05w Loomis & Morgan (1973) -43.00 -16.00 35 -54.20 -1.30 28 5 30.9 0.023 n25w NGDC Chain 115-4 -54.50 -1.10 30 3 30.8 0.064 n25w NGDC Chain 115-4 -54.50 -1.10 30 3 30.8 0.064 n25w NGDC Chain 115-4 -54.60 -1.00 30 5 30.8 0.023 n25w NGDC Chain 115-4 Africa-South America: Transform Azimuths 15.30 -45.80 95.5 3 94.0 0.128 12.60 -44.60 90.0 3 93.1 0.108 Roest et al. (1984) Collette et al. (1979) 12.20 -43.80 90.0 3 92.6 0.101 10.80 -42.30 91.5 2 91.7 0.197 Collette et al. (1979) Macdonald et al. (1986) .0.02 .17.88 83.0 10 79.2 0.005 7.80 -37.00 92.0 8 88.6 0.008 Emery & Uchupi (1984)

	** **				0.01/	From A. Holori (1994)
0	-32.00	90.0	\$	86.0	0.015	Emery & Uchupi (1984)
0	-21.50	82.0	2	81.0	0.110	Belderson et al. (1984)
0	-14.50	76.0	3	77.8	0.069	Emery & Uchupi (1985)
ю	12.50	77.7	2	77.3	0.150	Brozena (1986)
0	-14.00	77.5	3	78.2	0.056	Brozena (1986)
10	-14.00	80.0	2	78.5	0.098	D. Forsyth
10	-14.80	80.0	3	78.8	0.042	(personal communication, 1985) D. Forsyth
20	-2.00	65.0	10	71.0	0.006	(personal communication, 1985) Sclater et al. (1976a)
a-S	outh Ame	rica: Si	ip Ve	clors.		
34	-45.92	97.0	10	94.1	0.012	Bergman & Solomon (1988)
30	-45.78	98.0	10	94.0	0.011	Bergman & Solomon (1988)
14	-45.18	100.0	20	93.0	0.003	Engels et al. (1986)
84	-44.57	95.0	15	93.1	0.004	CMT 6.09.87
05	-43.79	101.0	20	92.6	0.002	Engeln et al. (1986)
79	-43.51	92.0	10	92.4	0.009	Bergman & Solomon (1988)
83	-43.43	90.0	10	92.4	0.008	CMT 1.10.85
83	-43.23	96.0	20	92.2	0.002	Engeln et al. (1986)
77	-43.11	92.0	10	92.2	0.008	Cher a 20 84
79	-42.23	96.0	15	91.7	0.003	Eastle at al (1986)
12	42.02	97.0	20	91.3	0.002	Baraman & Salaman (1988)
*0	-10.87	67.0	15	90.3	0.003	CMT 8.13.80
05	-38.79	102.0	20	89.6	0.001	Enzela et al. (1986)
15	-38 76	93.0	10	89.6	0.006	CMT 11.01.84
10	-38.55	89.0	15	89.5	0.003	CMT 11.05.78
04	-38.39	95.0	15	89.4	0.003	CMT 12.06.81
11	-38.09	90.0	10	89.3	0.006	Engeln et al. (1986)
39	-36.10	88.0	15	\$8.1	0.002	CMT 4.22.81
30	-34.86	85.0	10	\$7.4	0.005	Engels et al. (1986)
80.	-34.87	80.0	15	87.5	0.002	CMT 12.24.85
10	-34.04	89.0	15	87.0	0.002	CMT 7.26.80
.07	-33.85	94.0	20	86.9	0.001	CMT 6.30.84
67	-30.39	84.0	15	85.3	0.002	CMT 10.12.85
.80	-29.88	83.0	10	85.0	0.004	CMT 3 20.78
77	-29.62	\$7.0	10	\$4.9	0.004	CMT 3.20.78
11	-29.60	80.0	20	84.9	0.001	CMT 7.24.80
82	-28.98	90.0	20	84.6	0.001	Engeln et al. (1986)
95	-28.43	88.0	10	84.3	0.004	CMT 6.06.85
.97	-28.29	89.0	20	84.2	0.001	Engeln et al. (1986)
.93	-28.09	\$2.0	15	84.1	0.002	CMT 9.19.84
.14	-27.71	\$5.0	15	83.9	0.002	CMT 6.22.78
.89	-27.11	\$5.0	15	83.6	0.002	CMT 11.14.79
.95	-27.08	82.0	15	83.6	0.002	CMT 11.02.81
93	-20.83	85.0	15	83.5	0.002	CMT 7.01.85
180	-20.77	81.0	10	83.5	0.002	East at al (1986)
90	-26.50	88.0	20	83.3	0.001	Engela et al. (1986)
175	-26.14	88.0	20	83.1	0.001	CMT 3.23.86
81	-25.45	89.0	20	82.8	0.001	Engeln et al. (1986)
11	-25.35	84.0	10	82.8	0.004	CMT 11.01.80
.19	-24,68	\$7.0	10	82.5	0.004	CMT 8.12.82
.30	-24.30	99.0	20	82.4	0.001	Engeln et al. (1986)
1.99	-23.48	87.0	15	81.9	0.002	CMT 12.08.84
.85	-22.13	85.0	20	81.3	0.001	Engels et al. (1986)
.97	-21.86	\$1.0	0 10	\$1.2	0.004	CMT 1.03.82
).84	-21.81	77.0	0 10	\$1.1	0.004	CMT 10.13.83
0.51	-19.92	80.0	15	80.2	0.002	CMT 12.29.86
0.50	-19.90	80.0	20	80.2	0.001	Engeln et al. (1986)
1.52	-19.86	77.0	10	80.2	0.005	CMT 4.22.84
0.58	-19.77	83.0	15	80.1	0.002	CMT 10.09.34
0.38	-19.55	\$0.0	15	80.0	0.002	CMT 6.04.85
1.22	-19.19	79.0	J 15	79.8	0.002	CM1 0.07.87
1.32	-19.17	83.0	0 20	79.8	0.001	CARES 05 87
0.04	-19.14	71.0	0 10	79.8	0.005	CMT 7 07 81
x.13	-18.83	82.4	0 20	79.6	0.003	Engeln et al. (1986)
0.50	-18.00	244	0 15	20.4	0.002	CMT 3.12.87
0.10	-18.03	80.0	0 20	79.1	0.001	Engela et al. (1986)
0.02	17 88	83.0	0 10	20.2	0.005	CMT 6.24.86

Arabia-India: Fault Trends

21.00	61.80	30.0	5	27.8	0.459	Matthews (1966)
18.00	60.20	23.0	5	22.3	0.534	Matthews (1966)
Arabia-	India: Sli	p Vector	rs			
24.58	66.23	41.0	15	37.5	0.270	Ouittmever & Kalka (1984)
23.79	64.73	28.0	15	34.6	0.176	Quillmeyer & Kalka (1984)
21.87	62.32	12.0	15	29.5	0.067	Quittmeyer & Kalka (1984)
20.91	62.44	26.0	15	28.3	0.055	CMT 4.7.85
14.94	57.96	23.0	15	16.4	0.171	CMT 12 14 85
14.57	58.09	10.0	15	16.0	0.188	CMT 12.5.81

The motion on some pairs of plates are well constrained because they have oceanic boundaries (e.g. Africa/South America).

Others are poorly known (e.g. Arabia/India)

Geological model : closure circuit

The relative motion of pairs of plate without data can be determined through a **circuit** of pairs of plates with data. (e.g. India/Australia is known through Africa, or India/Eurasia through Africa and North America)

The result is of course less well constrained

NNR-Nuvel-1A : velocities

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

NNR-Nuvel-1A : rotation poles

IGS network

IGS Tracking Network : http://igscb.jpl.nasa.gov

GMT Nay 10 17:22:02 2004

GPS Solutions : Revel, Sella et al. 2002 (ITRF97)

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

GPS Solutions : ITRF2000, Altamimi et al., 2003

GPS finds Arabia, India and Nazca are slower

GPS finds Arabia, India and Nazca are slower

Africa Arabia India solution

Afar 91 - 03 - sol26 (ITRF 2000) relative to NNR-Nuvel-1A Eurasia (50.6,-112.4,0.23)

GPS velocities show :

- Africa moving slowly north against Eurasia
- Somalia being separated from Africa
- Arabia moving rapidly North against Eurasia
- India moving even faster north against Eurasia...

...but this does not mean the relative motion of India/Arabia is important

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Arabia/India relative motion

Arabia / India relative motion

The rotation poles of India and Arabia are very close to each other. So the velocity of India is higher than the velocity of Arabia **only because India is further away from the rotation pole**

Geological velocities (white & red arrows) on the boundary between Arabia and India are almost identical

GPS determined poles allow to **predict** velocities on this boundary. They should match this condition required by Geology : there is almost no deformation there

GS of CAS - Geodesy & Geodynamics - Beijing June 2004

India-Africa-Somalia-Eurasia velocity composition

for Nuvel-1A, India/Eurasia is equal to India/Africa + Africa/Eurasia

But India/Eurasia is equal to India/Africa + **Africa/Somalia** +Somalia/Eurasia

Revised Nuvel give high (too high) velocity for Somalia

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Rigid Sundaland

South-East ASIA 94-96-98-00 (ITRF2000) ENS solution / NNR-Nuvel-1A Eurasia (50.6,-112.4,0.23)

GPS campaigns with more than 60 sites allow to determine that :

 South-East Asia (red arrows) is an individual block which moves away from Eurasia (black arrows)

 South China (blue arrows) also moves away from Eurasia at around 10 mm/yr eastward

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

GEODYSSEA poles

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Older GEODYSSEA poles

New ASEAN solution

We determine the presentday relative motion between India and Sundaland as well as the horizontal crustal motion within these two plates based on a regional GPS data set including ~190 stations in Asia spanning 11 years. This data set includes GEODYSSEA, APRGP, THAICA, permanent Malaysian network, Nepalese and Indian stations.

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Indian residual velocities

Pole positions don't matter ... Only residual velocities do

India is

Residual velocities reach the precision measure-

ASEAN Residual velocities

Sundaland is more deformed, at least near its boundaries

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

India/Sunda relative motion

Pole positions don't matter....only predicted motions on plate boundary do

Using the measurements we can compute the rotation pole between India and Sundaland

Using the relative pole, we can predict velocities where we don't have measurements

Then we can try to guess what is the motion on geological structures we know but we did not measure

Strain rate and rotation rate tensors (1)

To asses plate deformation :

- 1. Look at station velocity residuals
- 2. Compute strain rate and rotation rate tensors

Strain =
$$\frac{\text{Velocity}}{\text{Distance}}$$
 = $\frac{\text{mm/yr}}{\text{km}}$ = % / yr
Matrix tensor notation : $S_i^j = d(V_i) / d(x_j)$ = $d(V_x) / d(x) = d(V_x) / d(x) / d(y)$

Strain rate and rotation rate tensors (2)

$$[E] = \frac{1}{2} ([S] + [S]^{T}) = \begin{cases} E_{11} & E_{12} \\ & & & & & & & & & \\ E_{12} & E_{22} \end{cases} \qquad (W] = \frac{1}{2} ([S] - [S]^{T}) = \begin{cases} 0 & W \\ & & & & & & & \\ & & & & & & \\ -W & 0 \end{cases}$$

[E] has 2 Eigen values : \mathcal{E}_1 , \mathcal{E}_2

 \mathcal{E}_1 and \mathcal{E}_2 are extension/compression along principal direction defined by angle θ (defined as angle between \mathcal{E}_2 direction and north)

$$\mathcal{E}_{1} = \mathsf{E}_{11} \cos^{2}\theta + \mathsf{E}_{22} \sin^{2}\theta - 2 \mathsf{E}_{12} \sin\theta \cos\theta$$
$$\mathcal{E}_{2} = \mathsf{E}_{11} \sin^{2}\theta + \mathsf{E}_{22} \cos^{2}\theta - 2 \mathsf{E}_{12} \sin\theta \cos\theta$$

Strain rate and rotation rate tensors (3)

Minimum requirement to compute strain and rotation rates is :

3 velocities (to allow to determine 3 values \mathcal{E}_1 , \mathcal{E}_2 , and W)

Therefore we can compute strain rate and rotation rate within any polygon, the minimum polygon being a triangle

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Strain and rotation in GEODYSSEA network

Strains :

extension/compression/strike-slip

Rotations :

Anti-clockwise/clockwise

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Intensity of strain in GEODYSSEA network

Intensity of strain rates in Delaunay triangles

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Strain and rotation in Myanmar

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Strain in Northern Sundaland (Thailand)

GS of CAS – Geodesy & Geodynamics – Beijing June 2004

Strain and rotation in Sulawesi network

extension/compression/strike-slip

Anti-clockwise/clockwise

Blocks and Internal deformation in Sulawesi

