DEFORMATION PATTERN IN ELASTIC CRUST

- Stress and force in 2D
- Strain : normal and shear
- Elastic medium equations
- Vertical fault in elastic medium => arctangent
- General elastic dislocation (Okada's formulas)
- Fault examples

Stress (σ) in 2D

- Normal stress $=\sigma_{\mathrm{ii}}$
- Shear stress $=\sigma_{i j}$
- Force $=\sigma \times$ surface
- no rotation =>

$$
\sigma x y=\sigma y x
$$

- only 3 independent components :
$\sigma_{x x}, \sigma_{y y}, \sigma_{x y}$

Applied forces

Normal forces on x axis :

$$
\begin{align*}
& =\sigma_{x x}(x) . \delta y-\sigma_{x x}(x+\delta x) . \delta y \\
& =\delta y\left[\sigma_{x x}(x) .-\sigma_{x x}(x+\delta x)\right] \\
& =-\delta y d \sigma_{x x /} d x \cdot \delta x \tag{1}
\end{align*}
$$

Shear forces on x axis :

$$
\begin{align*}
& =\sigma_{y x}(y) . \delta x-\sigma_{y x}(y+\delta y) . \delta x \\
& =-\delta x \sigma_{y x /} d y \cdot \delta y \tag{2}
\end{align*}
$$

Total on x axis $=(1)+(2)=\left[\left[\sigma^{d x /} d x+d \sigma_{y x /} d y\right] \delta x \delta y\right.$

Forces Equilibrium

Total on x axis $=\left[d \sigma_{x x /} d x+d \sigma_{y x /} d y\right] \delta x \delta y$
Total on y axis $=\left[d \sigma_{y y /} d y+d \sigma_{y x /} d x\right] \delta y \delta x$

Equilibrium $=>\quad\left[\begin{array}{l}{\left[d \sigma_{y y /} d y+d \sigma_{y x /} d x\right]=0} \\ {\left[d \sigma_{x x /} d x+d \sigma_{y x /} d y\right]=0}\end{array}\right.$

Normal strain : change length (not angles)

$\delta x+\varepsilon x x . \delta x$

- Change of length proportional to length
- $E_{x x}, \varepsilon_{y y}, \varepsilon_{z z}$ are normal component of strain

Shear strain : change angles

AFTER
$\varepsilon_{x y}=-1 / 2(\Phi 1+\Phi 2)=1 / 2\left(d \omega_{y} / d x+d \omega_{x} / d y\right)$
$\mathcal{E}_{x y}=\mathcal{E}_{\mathrm{yx}}$ (obvious)

Solid elastic deformation (1)

- Stresses are proportional to strains
- No preferred orientations

$$
\begin{aligned}
& \sigma_{x x}=(\lambda+2 G) \varepsilon x x+\lambda \varepsilon y y+\lambda \varepsilon_{z z} \\
& \sigma_{y y}=\lambda \varepsilon_{x x}+(\lambda+2 G) \varepsilon y y+\lambda \varepsilon_{z z} \\
& \sigma_{z z}=\lambda \varepsilon_{x x}+\lambda \varepsilon_{y y}+(\lambda+2 G) \varepsilon_{z z}
\end{aligned}
$$

- λ and G are Lamé parameters

The material properties are such that a principal strain component \mathcal{E} produces a stress $(\lambda+2 G) \mathcal{E}$ in the same direction and stresses $\lambda \varepsilon$ in mutually perpendicular directions

Solid elastic deformation (2)

Inversing stresses and strains give :

$$
\begin{aligned}
& \varepsilon_{x x}=1 / E \sigma_{x x}-V_{/ E} \sigma_{y y}-V_{E} \sigma_{z z} \\
& \varepsilon_{y y}=-V_{E} \sigma_{x x}+1 / E \sigma_{y y}-V_{E} \sigma_{z z} \\
& \varepsilon_{z z}=-v_{E} \sigma_{x x}-v_{E E} \sigma_{y y}+1 / E \sigma_{z z}
\end{aligned}
$$

- E and V are Young's modulus and Poisson's ratio

$$
\text { a principal stress component } \sigma \text { produces }
$$

a strain ${ }^{1 / E} \sigma$ in the same direction and
strains $V_{/_{E}} \sigma$ in mutually perpendicular directions

Elastic deformation across a locked fault

Two plates (red and green) are separated by a vertical strike-slip fault.

If the fault was slick then the two plates would slide freely along each other with no deformation. But because its surface is rough and there is some friction, the fault is locked. So because the plates keep moving far away from the fault, and don't move on the fault, they have to deform.

What is the shape of the accumulated deformation?

Mathematical formulation

Mathematical formulation

-Symetry => all derivative with $\mathrm{y}=0$

$$
\varepsilon_{y y}=0
$$

- No gravity $=>\sigma_{z z}=0$
-What is the displacement field U in the elastic layer?

Mathematical formulation

-Elastic equations :
(1) $\sigma_{x x}=(\lambda+2 G) \mathcal{E}_{x x}+\lambda \varepsilon_{z z}$

viscous flow in the astenosphere
(2) $\sigma y y=\lambda \varepsilon_{x x}+\lambda \varepsilon_{z z}$
$\sigma x y=2 G \mathcal{E}_{x y} \quad \sigma x z=2 G \mathcal{E}_{x z}$
(3) $\sigma_{z z}=\lambda \varepsilon_{x x}+(\lambda+2 G) \varepsilon_{z z}$
$\sigma y z=2 G \varepsilon y z$
(3) $+\sigma_{z z}=0 \Rightarrow \lambda \varepsilon_{x x}+\lambda \varepsilon_{z z}=-2 G \varepsilon_{z z}$
\longrightarrow and (2) $\Rightarrow>\sigma_{y y}=\lambda \varepsilon_{x x}+\lambda \varepsilon_{z z}=-2 G \varepsilon_{z z}$

$$
\Rightarrow \quad \varepsilon_{x x}=-(2 G+\lambda) / \lambda \varepsilon_{z z}
$$

\longrightarrow and (1) $=>\sigma_{x x}=\left[-(\lambda+2 G)^{2} / \lambda+\lambda\right] \varepsilon_{z z}$

Mathematical formulation

- Force equilibrium along the 3 axis

(x) $d \sigma_{x x} / d x+d \sigma_{y x} X d y+d \sigma_{x z} / d z=0$
(y) $d \sigma_{x y} / d x+d \sigma_{y y} X d y+d \sigma_{y z} / d z=0$
(z) $d \sigma_{x z} / d x+d \sigma_{y} y X d y+d \sigma_{z z} X d z=0$
- Derivation of eq. 1 with x and eq. 3 give: $\mathrm{d}^{2} \sigma_{x x} / d x^{2}=0$
- equation 2 becomes: $\quad d \sigma_{x y} / d x+d \sigma_{y z} / d z=0$

Mathematical formulation

relations between
stress (σ) and displacement vector (U)

viscous flow in the astenosphere

$$
\begin{aligned}
& \sigma_{x y}=2 G \varepsilon_{x y}=2 G\left[d U_{x} / d y+d U_{y} / d x\right] \cdot 1 / 2 \\
& \sigma_{y z}=2 G \varepsilon y z=2 G\left[d U_{z} / d y+d U_{y} / d z\right] \cdot 1 / 2
\end{aligned}
$$

using $d \sigma_{x y} / d x+d \sigma_{y z} / d z=0$ we obtain:
$d / d x\left[d U X X d y+d U_{y} / d x\right]+d / d z\left[d U_{z} X d y+d U_{y} / d z\right]=0$

$$
\rightarrow d^{2} U_{y} / d x^{2}+d^{2} U_{y} / d z^{2}=0
$$

Mathematical formulation

$$
d^{2} U_{y} / d x^{2}+d^{2} U_{y} / d z^{2}=0
$$

What is U_{y}, function of x and z, solution of this equation ?
Guess : $\mathrm{U}_{\mathrm{y}}=\mathrm{K}$ arctang $(\mathrm{X} / \mathrm{z})$ works fine !
Nb. $\quad \operatorname{datan}(\alpha) /_{d \alpha}=1 /(1+\alpha 2)$

$$
\begin{array}{lll}
d u_{y} / d x=K / z\left(1+x^{2} / z^{2}\right) & => & d^{2} U_{y} / d x^{2}=-2 K x z /\left(z^{2}+x^{2}\right) \\
d u_{y} / d z=-K x / z^{2}\left(1+x^{2} / z^{2}\right)=> & d^{2} U_{y} / d z^{2}=2 K x z /\left(x^{2}+z^{2}\right)
\end{array}
$$

Mathematical formulation

$$
\mathrm{U}_{\mathrm{y}}=\mathrm{K} \operatorname{arctang}(\mathrm{X} / \mathrm{z})
$$

Boundary condition at the base of the crust $(z=0)$

$$
U_{y}=K . \Pi / 2 \text { if } x>0=K .-\Pi / 2 \text { if } x<0
$$

And also :

$$
\begin{aligned}
& U_{y}=+V_{0} \text { if } x>0 \quad=-V_{0} \text { if } x<0 \\
& =>K=2 . V_{0} / \Pi
\end{aligned}
$$

Mathematical formulation

$$
\mathrm{U}_{\mathrm{y}}=\mathrm{K} \operatorname{arctang}(\mathrm{x} / \mathrm{z})
$$

viscous flow in the astenosphere
at the surface ($\mathrm{z}=\mathrm{h}$)

$$
U_{y}=2 \cdot V_{0} / \Pi \quad \operatorname{arctang}(x / h)
$$

The expected profile of deformation across a strike slip fault we should see at the surface of the earth (if the crust is elastic) is shape like an arctangant function. The exact shape depends on
 the thickness of the elastic crust, also called the locking depth.

Arctang profiles

$$
U_{y}=2 . V_{0} / \Pi \text { arctang }(\mathrm{x} / \mathrm{h})
$$

width of deformation band with a fault locked at different depth
GS of CAS - Geodesy \& Geodynamics - Beijing June 2004

dipping fault

viscous flow in the astenosphere

If the fault is not vertical but dipping with a given angle, then the profile at the surface is just the same.

Only the center of the profile is shifted to be at the vertical of the shear flow in the viscous layer.

Then, the geological trace of the fault is not the place where the shear gradient is maximum

Elastic dislocation (Okada, 1985)

Surface deformation due to shear and tensile faults in a half space, BSSA vol75, $n^{\circ} 4,1135-1154,1985$.

The displacement field $u_{i}\left(x_{1}, x_{2}, x_{3}\right)$ due to a dislocation $\Delta u_{j}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ across a surface Σ in an isotropic medium is given by :

$$
u_{i}=\frac{1}{F} \iint_{\Sigma} \Delta u_{j}\left[\lambda \delta_{j k} \frac{\partial u_{i}^{n}}{\partial \xi_{n}}+\mu\left(\frac{\partial u_{i}^{j}}{\partial \xi_{k}}+\frac{\partial u_{i}^{k}}{\partial \xi_{j}}\right)\right] \nu_{k} d \Sigma
$$

Where $\delta_{j k}$ is the Kronecker delta, λ and μ are Lamé's parameters, v_{k} is the direction cosine of the normal to the surface element $d \Sigma$.
u_{i}^{j} is the $i^{\text {th }}$ component of the displacement at $\left(x_{1}, x_{2}, x_{3}\right)$ due to the $\mathrm{j}^{\text {th }}$ direction point force of magnitude F at $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$

Elastic dislocation (Okada, 1985)

(1) displacements

For strike-slip

For dip-slip
For tensile fault

$$
\left\{\begin{array}{l}
u_{x}^{0}=\frac{U_{3}}{2 \pi}\left[\frac{3 x q^{2}}{R^{5}}-I_{3}^{0} \sin ^{2} \delta\right] \Delta \Sigma \\
u_{y}^{0}=\frac{U_{3}}{2 \pi}\left[\frac{3 y q^{2}}{R^{5}}-I_{1}^{0} \sin ^{2} \delta\right] \Delta \Sigma \\
u_{z}^{0}=\frac{U_{3}}{2 \pi}\left[\frac{3 d q^{2}}{R^{5}}-I_{5}^{0} \sin ^{2} \delta\right] \Delta \Sigma
\end{array}\right.
$$

Elastic dislocation (Okada, 1985)

Where :

$$
\left\{\begin{array}{l}
I_{1}{ }^{0}=\frac{\mu}{\lambda+\mu} y\left[\frac{1}{R(R+d)^{2}}-x^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
I_{2}{ }^{0}=\frac{\mu}{\lambda+\mu} x\left[\frac{1}{R(R+d)^{2}}-y^{2} \frac{3 R+d}{R^{3}(R+d)^{3}}\right] \\
I_{3}{ }^{0}=\frac{\mu}{\lambda+\mu}\left[\frac{x}{R^{3}}\right]-I_{2}{ }^{0} \\
I_{4}{ }^{0}=\frac{\mu}{\lambda+\mu}\left[\quad-x y \frac{2 R+d}{R^{3}(R+d)^{2}}\right] \\
I_{5}{ }^{0}=\frac{\mu}{\lambda+\mu}\left[\frac{1}{R(R+d)}-x^{2} \frac{2 R+d}{R^{3}(R+d)^{2}}\right] \\
\left\{\begin{array}{l}
p=y \cos \delta+d \sin \delta \\
q=y \sin \delta-d \cos \delta \\
R^{2}=x^{2}+y^{2}+d^{2}=x^{2}+p^{2}+q^{2} .
\end{array}\right.
\end{array}\right.
$$

Sagaing Fault, Myanmar

Offset fault/dislocation $=17 \mathrm{~km}$
Dislocation long. $=96.12^{\circ} \mathrm{E}$
Locking depth $=15.0 \mathrm{~km}$
Far field velocity $=18 \mathrm{~mm} / \mathrm{yr}$

GPS measurement on the Sagaing fault fit well the arctang profile
but with an offset of 1015 km

Palu Fault, Sulawesi

Part of the GPS data on Palu fault fits well an arctang profile. But wee need a second fault to explain all the data

Altyn Tagh Fault, China

Altyn Tagh Fault, China (INSAR)

Interferogram Nov. 1995/ Nov. 1999

San Andreas Fault, USA (INSAR)

Subduction in south America

South-America 96-99-02 (ITRF2000) ENS solution / NNR-Nuvel-1A South america (-25.4,-124.6,0.11)

SUR CHILI 96-99-02 (ITRF2000)

Subduction modeling

Subduction parameter adjustments

Oblique Subduction $\mathrm{dip}=13 \mathrm{deg} \mathrm{Id}=60 \mathrm{~km} V=50.2 \mathrm{~mm} / \mathrm{yr} \mathrm{N} 72$
Oblique Subduction $\operatorname{dip}=13 \mathrm{deg} \mathrm{Id}=60 \mathrm{~km} V=50.2 \mathrm{~mm} / \mathrm{yr} \mathrm{N} 72$

GS of CAS - Geodesy \& Geodynamics - Beijing June 2004

