Mogi class

class csi.Mogi(name, utmzone=None, ellps='WGS84', lon0=None, lat0=None, verbose=True)
computeVolume()

Computes volume (m3) of spheroidal cavity, given the semimajor axis.

Returns:
  • volume : Volume of cavity

createShape(x, y, z0, a, latlon=True)

Defines the shape of the mogi pressure source.

Args:
  • x, y : Center of pressure source in lat/lon or utm

  • z0 : Depth

  • a : Radius (m)

Returns:

None

pressure2dis(data, delta='pressure', volume=None)

Computes the surface displacement at the data location using Mogi formulations.

Args:

data (Data): Data object from GPS or InSAR. delta (str): Unit pressure is assumed. Default is “pressure”. volume (float): Volume change. If None, the volume change is calculated based on the pressure change.

Returns:

numpy.ndarray: Array of x, y, and z displacements.

Raises:

Exception: If the shape of the spheroid is not defined.

Notes:

This method uses Mogi’s equations to compute the surface displacement at the data location. The pressure change or volume change can be specified to calculate the displacement.

pressure2volume()

Converts pressure change to volume change (m3) for Mogi.

Uses formulation (eq. 15) from: Amoruso and Crescentini, 2009, Shape and volume change of pressurized ellipsoidal cavities from deformation and seismic data

Assuming radius (a) << depth (z0), formulation is: deltaV = (3/4)*(V*deltaP/mu)

i.e. point source approximation for eq. 19 in: Battaglia, Maurizio, Cervelli, P.F., and Murray, J.R., 2013, Modeling crustal deformation near active faults and volcanic centers

If no assumptions on radius vs. depth: deltaV = (pi*a^3)*(deltaP/mu)*[1+(a/z0)^4]

Returns:
  • deltavolume : Volume change

setPressure(deltaPressure)

Set deltavolume given deltapressure.

Returns:
  • deltapressure : Pressure change

setVolume(deltaVolume)

Set deltapressure given deltavolume.

Returns:
  • deltavolume : Volume change

volume2pressure()

Converts volume change (m3) to pressure change for Mogi.

Uses formulation (eq. 15) from: Amoruso and Crescentini, 2009, Shape and volume change of pressurized ellipsoidal cavities from deformation and seismic data

Assuming radius (a) << depth (z0), formulation is: deltaP = (4/3)*(mu/V)*deltaV

Returns:
  • deltapressure : Pressure change