Yang class¶
- class csi.Yang(name, utmzone=None, ellps='WGS84', lon0=None, lat0=None, verbose=True)¶
- computeVolume()¶
Computes volume (m3) of ellipsoidal cavity, given the semimajor axis.
- Returns:
volume : Volume of cavity
- createShape(x, y, z0, ax, ay, az, dip, strike, latlon=True)¶
Defines the shape of the mogi pressure source.
- Args:
x, y : Center of pressure source in lat/lon or utm
z0 : Depth
(ax, ay, az) : Principle semi-axes (m) before rotations applied. az will be the semi-major axis, while ax = ay.
dip : Plunge angle (dip=90 is vertical source)
strike : Azimuth (azimuth=0 is aligned North)
- Returns:
None
- pressure2dis(data, delta='pressure', volume=None)¶
Computes the surface displacement at the data location using yang. ~~~ This is where the good stuff happens ~~
- Args:
data : Data object from gps or insar.
delta : Unit pressure is assumed.
- Returns:
u : x, y, and z displacements
- pressure2volume()¶
Converts pressure change to volume change (m3) for Yang.
Uses empirical formulation from: Battaglia, Maurizio, Cervelli, P.F., and Murray, J.R., 2013, Modeling crustal deformation near active faults and volcanic centers
Rigorous formulation: deltaV = ((1-2v)/(2*(1+v)))*V*(deltaP/mu)*((p^T/deltaP)-3), where V is the volume of the ellipsoidal cavity and p^T is the trace of the stress inside the ellipsoidal cavity.
Empirical formulation: deltaV = V*(deltaP/mu)((A^2/3)-0.7A+1.37)
- Returns:
deltavolume : Volume change
- setPressure(deltaPressure)¶
Set deltavolume given deltapressure.
- Returns:
deltapressure : Pressure change
- setVolume(deltaVolume)¶
Set deltapressure given deltavolume.
- Returns:
deltavolume : Volume change
- volume2pressure()¶
Converts volume change (m3) to pressure change for Yang.
Uses empirical formulation from: Battaglia, Maurizio, Cervelli, P.F., and Murray, J.R., 2013, Modeling crustal deformation near active faults and volcanic centers
Empirical formulation: deltaP = (deltaV/V)*(mu/((A^2/3)-0.7A+1.37))
- Returns:
deltapressure : Pressure change