Water, carbon, erosion and fluid-rock coupling cycles
The Surface and Reservoir team is a multidisciplinary team, whose activities focus on soils and subsoils and flows of material (erosion), carbon and water. These themes are related to the atmosphere and climate, whether at time scales of (i) the paleoclimate (sedimentary basin formation, geothermics), (ii) the meteorological event (erosion, landslide, flood, drought) or iii) the coming century (evolution/distribution of carbon stocks and water resource). To do this, the team mobilizes experimental methods in the laboratory, instruments measurement sites (distributed in different regions: tropical areas, Asia, Europe…), analyzes the data and develops models. One of the special features of the team is its good connection with operators (ADEME, Water Agencies, AFB), French or foreign local authorities (Region, City of Paris), as well as with industry/EPIC (working on hydrocarbons and carbon storage). The Surface and Reservoir team is part of the Institut Pierre-Simon Laplace.
People
Diversified PhD theses and post-doc fundings
ADEME, BRGM, Contrats industriels, CSC (Chine), IFPEN, Labex Matisse, Météo-France, Ville de Paris…
13 PhD students
B. Benitez – C. Daigre – G. Demorcy – J. Douçot – G. Flores – L. Gang – E. Gros
M. Guillou – B. Hulin – M. Lusseyran – A. Manlay – J. Piketty – A. Ternon
15 Post-docs
M. Alcantar – T. Briolet – E. Bruni – S. Diop – M. Guilbert – F. Kialka – J. Lebrun Thauront
M. Moradzadeh – L. Pacini – M. Sonnet – A. Stegehuis – M. Stojanova – H. Xu – J. Xue – Y. Zhou
A multidisciplinary team of researchers and teachers
soil biogeochemists, geomorphologists, hydrogeologists, rock mechanics, geophysicists
10 Permanents
S. Abiven (ENS) – P. Barré (CNRS 30) – S. Chapman (IR) – C. Dalin (CNRS 30) – P. Delorme (ENS)
J. Fortin (CNRS 9) – B. Guenet (CNRS 30) – F. Habets (CNRS 30) – P. Meunier (ENS) – S. Violette (SU)
2 Emeriti and Volonteers
C. Laj – J.-P. Pozzi
Projects
MRV4SOC
Funding: H2020 / People involved in the lab: Yue Zhou, Souleymane Diop, Bertrand Guenet
MRV4SOC aims at designing a comprehensive, robust, and cost-effective Tier 3 approach, accounting for changes in as many C pools as possible, to estimate GHG and full C budgets, coupling C and N cycles, quantify Soil Organic Carbon (SOC) accumulation, and assess the results of traditional management practices and C farming. The main challenges addressed in MRV4SOC are: i) monitoring changes in SOC accumulation due to climate change and socio-economic pressures; ii) accounting for C and N cycles in full C budgets; iii) development of scientifically-sound, standard, and transparent Tier 3 methodology at different scales, iv) implementation of high quality in-situ and RS data for testing methods and scale-up purposes; iv) standardisation of Monitoring, Reporting, and Verification schemes to ensure transparency, robustness, and cost-effectiveness; and v) a lack of trust in Voluntary Carbon Markets. To overcome these challenges, MRV4SOC will develop 6 specific objectives, which will be measurable, verifiable, and monitored through KPIs pointing at specific targets. MRV4SOC proposes a comprehensive 3-year work plan that ranges from the assessment of C pools in 9 land use/ land cover classes located in 14 Demonstration Sites (DS); to the potential integration of the approach MRV4SOC aims at designing a comprehensive and robust Tier 3 approach accounting for changes in as many C pools as possible (above-ground biomass, below ground-biomass, litter, dead wood, soil organic carbon, and harvested wood products) fully aligned with national GHG reporting. MRV4SOC seeks to develop solutions applicable for different spatio- temporal scales and climate change scenarios and validated for a wide variety of ecosystems in arid, temperate, and continental climate zones in collaboration with local stakeholders. The proposed approach will help establish reliable and transparent C farming credits within a cost-effective monitoring, reporting, and verification (MRV) methodological framework.
ALAMOD
Funding: Pepr FairC / People involved in the lab: Elisa Bruni, Annemiek Stegehuis, Pierre Barré, Bertrand Guenet
The increase or decrease in carbon stocks in continental ecosystems (soil and biomass) will have a significant impact on atmospheric CO2 concentration and therefore on the climate. It is therefore crucial to have predictive models capable of simulating changes in carbon stocks as accurately as possible. In order to test and validate these models, it is necessary to have stock measurements spaced out over time. Such data sets are invaluable because they are not easy to produce. In fact, as C stocks in soils change very little over the course of a year, the sites and networks of interest need to have been monitored for at least ten years. The French research community maintains several networks/sites that measure changes in C stocks. However, these data sets are scattered, sometimes incomplete or difficult to access. The objectives of the ALAMOD project are (1) to identify and complete the datasets produced by the sites/networks presenting changes in C stocks (soil and biomass) operated by the French community; (2) to develop innovative methods based on IR spectroscopy and satellite imagery to complete these datasets; (3) develop a data warehouse and portal to make these interoperable datasets available; (4) compare the models of C dynamics in ecosystems developed by the French community on these datasets; (5) improve these models or develop new ones to be able to accurately simulate changes in C stocks at different spatial scales and for different plant cover. ALAMOD will capitalise on the data produced and the know-how of several research infrastructures (AnaEE, IN-SYLVA, ICOS, etc.) that will be heavily involved in the project. It will also mobilise the entire French community that uses and develops models for simulating changes in C stocks in terrestrial ecosystems. The completion of this federative project will provide an unprecedented tool for evaluating models and very high-performance models, which will ensure that ALAMOD has a very strong impact in the academic field and beyond.
CLIM-FAS
Funding: Pepr FairC / People involved in the lab: Jie Xue, Moradzadeh Mostafa, Bertrand Guenet
CLIM-FAS aims to improve knowledge of both the contribution and mitigation potential of the French agricultural sector to climate change and to generate scientific evidence of the economic and legal effectiveness of a range of public mitigation actions. The main objectives are (i) to provide a robust estimate of greenhouse gas (GHG) emissions from agriculture under current and future climates, taking into account spatial variability, the heterogeneity of farms and the diversity of agricultural practices, (ii) to draw up a critical assessment of certain existing policies and legislation targeting GHG emissions and sinks, and (iii) to design and propose innovative systems that can be used directly by public decision-makers and stakeholders.
SHARING-MED
Funding: PRIMA / People involved in the lab: Elisa Bruni, Bertrand Guenet
The general objective of SHARInG-MeD is building an open and concerted soil monitoring scheme to integrate physico-chemical, biological (microbes, nematodes, invertebrates, plants), agronomic, economic and environmental indicators of the Mediterranean croplands; build models of the soil properties at the wide scale; changes of soil properties at the fine scale; relationship between land or crop (especially soil) management practices with environmental and economic performances of the agricultural systems or crops; models of harmonization of soil data among various public databases; and foster the diffusion of the soil improving practices (conservation agriculture, application of organic materials, use of beneficial microbes) in the Mediterranean drylands, with special emphasis to the West Asia and Nord Africa (WANA). An active promotion of the advantages and limitations of these strategies (land use and land use change, conservation practices, organic amendments and beneficial microbes) and of the Horizon Europe Soil Mission will be pursued by website, mass and social media activities, magazine and scientific publications, photos, videos, congress, high school lessons, farmers’ school, and a Massive Open Online Course on the project activities. These data and models will increase the agriculture sustainability by informing stakeholders on the use of and relationships among these indicators for Mediterranean landscape and crop sustainable managements and will provide a tool to modulate the contribution of agriculture on the mitigation of the climate change.
MOSS
Funding: Marie Skłodowska-Curie / People involved in the lab: Filip Kialka, Bertrand Guenet
The spatial arrangement of solids and pore spaces within soil (soil structure) is a major source of variability in the hydraulic properties of soils. It is through changes in soil structure that biological activity, land management, or the passage of time (including wet-dry and freeze-thaw cycles) affect the capacity of soil to retain and conduct moisture. Nevertheless, soil structure is at most tentatively represented in Earth-system models. As a result, we cannot quantify the effect of biological activity and management on soil water content and thus their full effect on the regional climate or the land carbon sink. This represents an important gap in our understanding of the natural environment, as well as a potential blind spot in our response to the climate emergency. Including soil structure in land-surface models is difficult, because its effect on the soil hydraulic properties cannot be reliably predicted based on a single, easy-to-measure quantity such as bulk density. At the same time, more detailed soil structure data and the methods to incorporate it are largely missing. MOSS will address these issues by 1)~developing a physics-based method of incorporating beyond density soil structure information into the models of soil hydraulic properties, 2)~implementing this method in a state-of-the-art Earth-system model, and 3)~using the new model to quantify the impact of soil structure on the land carbon sink. By doing so, MOSS will likely demonstrate that soil structure must be included in numerical models and protected in the field. Moreover, the method developed by MOSS will be applicable to agronomical and hydrological models and thus will have a plausible impact on the socially and economically important policy decisions these models inform.
FLORA – “Sustainable and healthy food solutions: system dynamics and trade-offs”
ERC Starting Grant – Carole Dalin [PI], Marcellin Guilbert [postdoc], Jasmine Gamblin [post-doc], Belén Benitez [PhD student]
Flora’s webpage
Food systems are crucial to end hunger, but also to mitigate and adapt to climate change, to protect and restore biodiversity, to ensure human health and well-being, to end poverty, and to support sustainable communities. While hunger has receded, food systems are causing increasingly severe damage to our environment and health.
The FLORA project (“Sustainable and healthy food solutions: system dynamics and trade-offs”) will contribute to a transformation of global agri-food production, trade, and consumption necessary to achieve sustainable and healthy food systems.
The project will create essential evidence to identify and implement the shifts in practices and behaviours needed to effectively achieve this transformation, by:
– making a diagnosis of the integrated health and environmental outcomes of food systems globally, from the production and consumption perspectives, with innovative measures of sustainability,
– identifying key threats and opportunities with system dynamics and complex network analyses, and
– targeting and evaluating tailored solutions with an interdisciplinary modelling framework.
The project will enable the identification of most effective, targeted solutions by considering trade-offs, synergies, and dynamics of key food systems components. Global in scope, it sets the ambitious goal to overcome barriers in current approaches by taking a systemic approach and establishing a robust, interdisciplinary framework supported by empirical advancements to tackle complex food systems challenges.
PREF-Alim – “TRANSITIONS TOWARDS CARBON-NEUTRAL FOOD SYSTEMS PREFERENCES, CONSUMER WELFARE & PUBLIC POLICIES”
Project led for PEPR FairCarbon by Fabrice Etilé (INRAE) with the participation of Carole Dalin
SHEFS-SA – “Sustainable and Healthy Food Systems in Southern Africa“
Project led for Wellcome Trust by Rob Slotow (UKZN, South Africa) with the participation of Carole Dalin
The initial SHEFS project, which ran from 2017 to 2024, has significantly enhanced our understanding of the complex interconnections between food systems, health, and the environment. This success is attributed to its multidisciplinary research and extensive stakeholder engagement. As the Wellcome Trust-funded work transitions from SHEFS to SHEFS-SA, which will run for a further six years, the group is focused on integrating the valuable insights gained, addressing any gaps identified, and taking forward any important questions that remain unanswered.
The SHEFS project highlighted the necessity for localised solutions, adaptable strategies, and a stronger focus on gender equity and social inclusion. It also demonstrated the value of the deliberate development of a transdisciplinary Community of Practice that brings together diverse stakeholders who share common goals and interests within an expanded climate sensitive SHEFS-SA framework, thus enhancing knowledge co-production, building relationships and the capacity to bring about change, improve food security, food safety, nutrition, and health – including mental health.
Building upon the solid foundation of SHEFS, SHEFS-SA aims to incorporate key learnings and address existing gaps. This includes developing context-specific strategies tailored to Southern Africa’s unique challenges and opportunities, implementing a comprehensive Monitoring, Evaluation, Learning, and Impact Assessment (MELIA) plan, and formulating a thorough Gender, Equity, and Social Inclusion (GESI) strategy to ensure interventions are inclusive, equitable, and empower marginalised groups. SHEFS-SA will maintain the emphasis on building a Global South-led Community of Practice, expanding the network to include partners from Malawi and Zimbabwe, and from new fields as the scope of the work has evolved.
SHEFS-SA will focus on several key workstreams to achieve its objectives:
– Promoting Sustainable Farming Practices and Biodiversity Conservation
– Investigating the Connections between Diet, Nutrition, and Health Outcomes
– Enhancing Food Access and Affordability for Vulnerable Populations
– Collaborating with Policymakers to Support Sustainable and Healthy Food Systems
– Co-developing Solutions with Communities to Ensure Cultural Relevance and Acceptance
In addition to these primary components, SHEFS-SA will explore innovative technologies, sustainable business models, and climate resilience strategies. By leveraging advanced research and technology, the project aims to drive systemic change and establish resilient food systems capable of enduring future challenges.
IceAq – “Impact de la fonte glaciaire sur la dynamique des aquifères : modélisation glacio-hydrogéologique couplée dans le contexte du changement climatique”
PI Sophie Violette, PhD Clémence Daigre – Collaborations : Guðfinna Tolly Aðalgeirsdóttir (IES-Iceland University), Olivier Gagliardini (IGE-Université Grenoble)
Le projet IceAq s’intéresse aux aquifères dans les vallées glaciaires des glaciers tempérés, qui ont été jusqu’à présent très peu étudiés, bien que leur réponse au changement climatique soit importante à connaître pour prédire l’évolution des ressources en eau et les risques liés à l’eau de fonte. La première étape du projet IceAq a permis d’équiper un site pilote, véritable observatoire de la dynamique des écoulements sous-glaciaires, de surface et souterrains, situé au Sud-Est de la calotte glaciaire du Vatnajoküll (Island). Ainsi les différents aquifères ont été caractérisés, les termes du bilan hydrologique dans ce contexte glaciaire ont été quantifiés et un modèle conceptuel hydrogéologique a été proposé. Cette première phase a aussi permis de déterminer le type d’information, qui faisait défaut et dont l’acquisition serait des plus pertinentes et, d’identifier les nouveaux développements numériques nécessaires.
La seconde phase du projet multidisciplinaire développe une approche expérimentale de terrain et une approche de modélisation couplée entre les écoulements glaciaires et les écoulements souterrains. Le projet s’articule autour : i) du développement d’un modèle numérique permettant le couplage entre les écoulements glaciaires et souterrains sous forçages climatiques (modèle multiphysique ELMER/Ice avec composantes sous-glaciaire et souterraine), et ii) de la maintenance du site pilote d’observation pour acquérir des données originales, complémentaires et indispensables pour initialiser ou calibrer ou valider le modèle développé selon le type de données. Il s’agit notamment de mieux caractériser les chenaux sous-glaciaires, leurs dynamiques ainsi que de mesurer les débits des rivières situées à l’aval des glaciers. Les données acquises viendront compléter le jeu de données initial et disponible dans la base de données en “open access”.
HydroSéisme – “Compréhension d’un système aquifère volcanique sous climat tropical et impacté par des séismes régionaux”
Jérôme Fortin, Sophie Violette, PhD Emile Gros – Collaboration : Benoît Vittecoq (BRGM)
En contexte volcanique d’Arc insulaire, les séismes régionaux provoquent des modifications des propriétés hydrodynamiques des aquifères au cours du temps. Le projet a pour objectifs de : 1) comprendre un système d’aquifères volcaniques sous couverture d’altérites, 2) quantifier l’impact de la modification des propriétés hydrodynamiques des aquifères en réponse aux séismes et aux évènements extrêmes sur les flux et, 3) quantifier les flux d’eau et d’éléments en solution échangés aux limites et entre aquifères. Ainsi une meilleure gestion des ressources en eau, tant en quantité qu’en qualité pourra être proposée.
Sonder les Corps
PhD SACRE Art & Sciences Anna Ternon – Collaboration : ENS – INSERM Institut du Fer à Moulin
PEPR OneWater Eau Bien commun
OneWater – Eau Bien Commun est un programme national de recherche sur l’eau douce continentale copiloté par le CNRS, le BRGM et INRAE, avec 10 partenaires académiques. Face à des pressions climatiques et anthropiques accrues sur l’environnement, ce programme vise à développer des recherches dans le domaine de l’eau pour changer de paradigme et réhabiliter l’eau comme bien commun. Financé à hauteur de 53 millions d’euros sur 10 ans par le Plan France 2030, OneWater – Eau Bien Commun doit contribuer à accélérer les transitions et mesurer les impacts des changements globaux sur les socio-écosystèmes à travers 6 grands défis scientifiques. En renforçant le dialogue science-société, One Water contribue à fédérer une « communauté eau » multi-acteurs.
Le LG ENS est particulièrement impliqué dans le défi 1 Anticipation qui vise à anticiper l’évolution de la ressource en eau par l’amélioration des connaissances de sa variabilité passée et future. Il s’appuie notamment sur le développement d’un réseau de lysimétrie pour observer la recharge des nappes, de modélisations hydro(géo)logiques incluant les activités humaines, ainsi que de prévisions saisonnières. Un des enjeux de ce défi est le développement d’un réseau lysimétrique national.
Plateforme de modélisation hydrogéologique nationale AQUI-FR
Collaborations ITE à Strasbourg, Géosciences Rennes, Mines Paristech, LGENS, BRGM, CNRM, Météo-France et OFB
Le projet Aqui-FR est né du constat d’une mauvaise intégration des eaux souterraines dans la gestion de l’eau à l’échelle nationale, en partie liée à l’absence de modélisation hydrogéologique sur la totalité du territoire. En effet, les modèles hydrogéologiques sont généralement développés à l’échelle des aquifères pour répondre à des enjeux spécifiques de gestion locale et sont peu valorisés une fois les études terminées. Or, les eaux souterraines ont une dynamique propre, qui, une fois bien identifiée, peut permettre une certaine prévisibilité à l’échéance de plusieurs mois. Pour aller au-delà de cette échéance, il est nécessaire de bien anticiper la recharge de ces nappes. Les eaux souterraines contribuent à maintenir les débits d’étiages et à atténuer les crues en intensité si ce n’est en durée. Elles sont fortement sollicitées pour l’eau potable ou l’irrigation. L’anticipation de cette ressource est donc d’intérêt pour de nombreux acteurs, et pour la préservation de l’environnement. Il intègre maintenant 4 modèles hydrogéologiques : Marthe et Eaudyssée adaptés aux aquifères sédimentaires, Eros adapté aux aquifères karstiques, et depuis peu HS1D adapté aux aquifères de socle. Aqui-FR produit maintenant des prévisions saisonnières en continu, en mode pré-opérationnel.
https://www.geosciences.ens.fr/recherche/projets/aqui-fr
AQUIFEX – Estimation de la recharge d’un aquifère par approche de type « Schéma de surface »
Projet porté pour le LRC Yves-Rocard par Florence Habets (ENS) et Lionel Schaper (CEA)
Les méthodes d’évaluation de la recharge (part de la pluie efficace alimentant les eaux souterraines) peuvent être multiples. Si les méthodes basées sur l’étude des eaux de surface ou de la zone saturée semblent bien adaptées dans le cas d’aquifères poreux homogènes, on peut s’interroger sur leur pertinence dans le cas d’aquifères fissurés hétérogènes (différences pouvant être sensibles entre bassin versant hydrologique et bassin hydrogéologique, réponses piézométriques hétérogènes et difficulté d’estimer correctement l’emmagasinement, …). Les méthodes basées sur l’étude de la zone non saturée sont quant à elles, la plupart du temps, de portée locale et le changement d’échelle peut s’avérer délicat. A l’inverse, les méthodes basées sur les bilans de surface ne sont pas dépendantes du type d’aquifère étudié et sont de portée plus globale. Ainsi, l’objectif du présent projet est d’estimer la quantité de la recharge alimentant les eaux souterraines d’un site d’étude (aquifère fissuré hétérogène en Bourgogne) à l’aide d’un modèle de surface.
Explore2
Participation de Florence Habets
Le projet Explore2, porté par INRAE et l’Office international de l’eau (OiEau), s’inscrit dans la suite de l’étude Explore 2070 (2010-2012) grâce auquel les acteurs de la recherche, autour du ministère de l’Écologie, avaient établi des premiers scénarios prospectifs de disponibilités des ressources en eau à l’échelle de la France.
Le projet Explore2 a pour objectif, d’ici 2024, d’actualiser les connaissances sur l’impact du changement climatique sur l’hydrologie à partir des dernières publications du GIEC, mais aussi d’accompagner les acteurs des territoires dans la compréhension et l’utilisation de ces résultats pour adapter leurs stratégies de gestion de la ressource en eau.
Projet Evaporation des lacs
Collaboration de Florence Habets avec SMVSA, OFB
Les sécheresses récurrentes et le risque d’intensification de ces sécheresses avec le changement climatique pousse de multiples acteurs des territoires à construire de nouveaux réservoirs d’eau pour s’adapter. Cependant, ces plans d’eau peuvent avoir des impacts négatifs sur les milieux en termes de quantité et de qualité de l’eau. Parmi ces impacts, les pertes par évaporation peuvent nuire à la fonction même de ces plans d’eau. Ainsi, aux Etats-Unis, les pertes par évaporation des plans d’eau sont estimées correspondre à un volume équivalent à la consommation en eau potable du pays. Les facteurs contrôlant les pertes par évaporation sont liées à la température de l’eau, elle-même dépendante de la forme de la retenue, notamment, de sa profondeurs, et des modes des remplissages et de vidanges du plan d’eau, de l’exposition au vent et de l’ensoleillement, qui peuvent être affectés par l’aménagement des berges, et des autres conditions météorologiques comme l’humidité de l’air. L’objectif de ce travail est, en plus d’une détermination des pertes actuelles, d’envisager les configurations des futurs plans d’eau les plus favorables à une réduction de ces pertes.
Chaire Ardian – ENS “Stockage du carbone” 2024-2030
Portée par Jerome Fortin, avec la participation de Pierre Barré, Alexandre Schubnel, Bertrand Guenet, Samuel Abiven
Le 25 avril, l’École normale supérieure (ENS-PSL) a officiellement annoncé la création d’une nouvelle chaire de recherche dédiée au stockage du carbone dans les sols et le sous- sol, également connue sous le nom de Carbon Capture. La chaire bénéficie du mécénat d’Ardian, l’un des leaders mondiaux de l’investissement privé. Cette initiative inaugure un partenariat de six ans pendant laquelle Ardian soutiendra les recherches pointues du laboratoire de Géologie, une composante du département de géosciences de l’ENS-PSL. L’objectif principal de cette chaire est d’approfondir la compréhension des mécanismes de stockage du carbone dans le sous-sol (stockage géologique) et les sols, un enjeu essentiel dans la lutte contre le réchauffement climatique.
https://fondation.ens.psl.eu/lancement-chaire-ardian-stockage-carbone-sol/
Dispersion and attenuation of elastic wave velocities
Porté par Jérôme Fortin et Samuel Chapman, Collaboration UNIL (Beatriz Quintal)
The importance of understanding well the attenuation/dispersion lies on the strong necessity to remotely characterize fluid-saturated rocks in subsurface using seismic methods. Knowledge of pore and fracture characteristics and their interconnectivity is of enormous significance, for example, to the development and production of geo-thermal resources as well as for the geological sequestration of CO2. We developed an apparatus for measurements over a large-frequency range, by the combination of forced oscillations (0.004 to 100 kHz in apparent frequency) and ultrasonic measurements (1 MHz) at various effective pressures. Several physical mechanisms are investigated : squirt flow, partial saturation, impact of fracture.
EARLY DIAGENESIS AS A PRECURSOR FOR AQUIFERS IN CARBONATE ROCKS
ANR JB Regnet (CYU), Jérôme Fortin
The goal of this project is to understand how carbonate aquifers develop and are further preserved following burial, with a particular emphasis on the precursor role of early diagenesis. Two questions are at the core of this project: (i) how do porosity and permeability evolve during early diagenesis and (ii) how are they further sustained over time considering mechanical compaction at depth? We address these questions through a unique investigation of the key factors conditioning the creation of porous and permeable units in carbonate rocks. The novelty of this approach is the simultaneous synthesis of analogous, controlled, carbonate microstructures with measurements of physical properties evolution.
Etude expérimentale intégrée de l’impact de l’altération des roches sur leurs propriétés hydromécaniques
Projet ENS/ IFPEN porté par Jérôme Fortin (ENS), Elisabeth Bemer (IFPEN) et Olivier Sissmann (IFPEN)
Les interactions fluides-roches sont au cœur de différents processus naturels (météorisation, karstogenèse, compaction chimique, diagenèse…) et anthropogéniques (stockage géologique du CO2, géothermie, réinjection des eaux de production…). L’écoulement de fluides réactifs au sein d’une formation rocheuse est susceptible d’induire des modifications drastiques de sa composition minéralogique et de sa structure poreuse, et subséquemment de ses propriétés hydromécaniques. L’objectif de ce travail est ainsi de développer une approche expérimentale intégrée permettant de comprendre l’effet d’un écoulement réactif sur la structure poreuse et les propriétés hydromécaniques des roches. Les transformations géochimiques considérées incluront des réactions de dissolution et/ou de précipitation.
Previous projects
REPRISE – Funding: STIC-AmSud / Lead: Bertrand Guenet
Future climate changes are mainly projected by Earth System Models. Climate scientists do not rely on a single model and several models have been developed in the world. Thanks to the ensemble of multiple models we can calculate future climate trajectories and associated uncertainties. One source of uncertainty comes from models’ structure and how the different mechanisms are represented and parameterized. One of the main challenges for climate scientists is to reduce such uncertainties. One possible option is the model development, but this is time consuming and needs large computing and human resources. The second option is to constraint model projections based on present day observations, in order to calculate biases and then correct the modelled data. This approach is known as emergent constraint framework. In the REPRISE collaboration we will analyse current Earth System Model simulations and analyses different output variables related to the carbon cycle, land use and climate, which will be compared to observations-based products. This work will be done through two work packages. The first one will focus on the emergent constraint framework to reduce uncertainties in future projections for specific outputs variables and regions. The second one will look at the model residues and identify their drivers to underlined specific aspect of the Earth system models that must be improved to reduce climate projections uncertainties. These two work packages will be done with a special focus over South America in order to reduce the climate change uncertainties over this region. Two additional work packages dedicated to funding exploration and to results communication/dissemination will also be included to ensure that the current consortium continues after the REPRISE project and to reach local stakeholders.
CHROME – Funding: Marie Skłodowska-Curie / Lead: Nuria Catalan
Organic carbon is exported from terrestrial to freshwater ecosystems where, not only is it being degraded and eventually lost as carbon dioxide, but such degradation occurs faster than in soils or marine systems. Across freshwaters, variations in organic matter degradation and reactivity have been related to compositional changes in organic matter. The flux from terrestrial to aquatic systems seems to be increasing associated to anthropogenic perturbations. However, despite the relevance of these fluxes for the global C cycle, Earth System Models (ESMs) are just starting to consider them. In that sense, a particularly crucial region deserving urgent attention is the Arctic, as permafrost soils hold a massive C stock that is vulnerable to being mobilized towards freshwaters. Such transfer could turn that vulnerable C stock from a sink into a carbon dioxide source. Therefore, determining the reactivity of that organic matter flux and incorporating it in surface models is key at the moment. The foundation of CHROME is the idea that the chemical diversity of organic matter explains its reactivity and, as such, should be considered in biogeochemical models. CHROME represents the first attempt to incorporate organic matter chemical diversity to ESMs, and will do so by: i) developing and selecting functional chemical diversity indices as indicators of Arctic organic matter reactivity and ii) implementing that knowledge in a regional branch of an ESM.
CCiCC – Funding: H2020 / Lead: Pierre Friedlingstein
CCiCC addresses the crucial knowledge gap in the climate sensitivity to carbon dioxide emissions, by reducing uncertainty in our quantitative understanding of carbon-climate interactions and feedbacks. This will be achieved through innovative integration of models and observations, providing new constraints on modelled carbon-climate interactions and climate projections, and supporting IPCC assessments and policy objectives. To meet this objective, CCiCC will (a) provide a step change in our ability to quantify the key processes regulating the coupled carbon-climate system, (b) use observational constraints and improved processes understanding to provide multi-model near-term predictions and long-term projections of the climate in response to anthropogenic emissions, and (c) deliver policy-relevant carbon dioxide emission pathways consistent with the UNFCCC Paris Agreement (PA) goals. To achieve its goals, CCiCC will develop and use: state-of-the-art Earth System Models (ESMs) including biogeochemical processes not included in previous IPCC reports; novel observations to constrain the contemporary carbon cycle and its natural variability; ESM-based decadal predictions including carbon-climate feedbacks and novel initialisation methods; novel emergent constraints and weighting methods to reduce uncertainty in carbon cycle and climate projections; and novel climate scenarios following adaptive CO2 emission pathways. CCiCC will support two central elements of the PA. First, the PA global stocktakes, by providing policy-relevant predictions of atmospheric CO2 and climate in response to the national determined contributions. Second, the PA ambitions to keep global warming well below 2°C, by providing robust estimates of the remaining carbon budgets and available pathways. CCiCC will bring together leading European groups on climate modelling and on carbon cycle research, uniquely securing Europe’s leadership in actionable science needed for the IPCC assessments.
HoliSoils – Funding: H2020 / Lead: Raisa Mäkipää
Knowledge gaps on forest soil processes and lack of a harmonised soil monitoring limit the EU’s ability to maintain soil related ecosystem services and to reach climate policy targets. A better understanding of the soil processes and a harmonised approach to manage and integrate data to computational models that are used for decision making is urgently required in order to meet climat and sustainability goals, including the UN’s Agenda 2030 SDGs, the Paris Agreement of Climate Convention, the EU Bioeconomy Strategy, the EU’s LULUCF Regulation, the EU Forest Strategy (2018), and the European Green Deal. HoliSoils will develop a harmonised soil monitoring framework and identify and test soil management practices aiming to mitigate CC and sustain provision of various ecosystem services essential for human livelihoods and wellbeing. HoliSoils incorporates novel methodologies and expert knowledge on analytical techniques, data sharing, soil properties and biodiversity, and processes with model development, in order to develop tools for soil monitoring, refine GHG assessment of the LULUCF sector, enhance efficiency of GHG mitigation actions, and improve numerical forecasting of soil-based mitigation, adaptation, and ecosystem services. HoliSoils applies a collaborative multiactor approach, in order to maximise its applicability and impact beyond its duration. The multidisciplinary consortium consists of universities and research institutes from across Europe, with leading expertise on soil analysis and databases, development of advanced analytical techniques, complex system modelling, digital soil mapping, soil ecology, disturbance ecology, forest and GHG inventories, social sciences, and communications. It also involves active engagement with diverse stakeholders, including forest owners and managers, industry actors, forest extension services, a certification body, forest and soils researchers, climate policy support and GHG inventory experts, and policymakers.
ROCOCO – Funding: ADEME / Lead: Lauric Cecillon
While the National Forest and Wood Programme aims to increase wood harvesting in France, the 4p1000 France study stresses the importance of monitoring the effects of intensified silvicultural management on soil organic carbon (SOC) stocks, with the objective of preserving or enhancing the net SOC sink constituted by French forest soils. However, monitoring the effects of increased biomass mobilisation in forests on SOC stocks is made very difficult because there is no validated SOC dynamics model under French forest conditions. Our ROCOCO project aims to remove the scientific barrier of a failing model of SOC dynamics in forests. As such, it is part of Axis 2 of the APR GRAINE. It focuses on one of the priorities of the 2019 edition concerning forest management and wood industries: “modelling the effects of forest management on soil carbon”. The objectives of the ROCOCO project are as simple as they are ambitious: to improve SOC dynamics models to make them more predictive of the changes observed in French forests (by making them compatible with a method quantifying SOC stability and by simplifying them); to use the improved models to simulate changes in SOC stocks in all French forests by 2050 under different forest management and climate scenarios. Our ROCOCO project will thus provide the scientific community and forest managers with operational SOC dynamics models and robust projections of SOC stock changes by 2050 under different climate and forest management scenarios. These projections will be able to more objectively inform public policies aimed at increasing wood harvesting in France with regard to their compatibility with the national low-carbon strategy.
Chaire Channel – Financement : Fondation Channel / Pilotage : Laurent Bopp
The ocean moderates and controls the timing of anthropogenic climate change. It has absorbed the vast majority of excess heat in the climate system—more than 90% since the 1970s. It is also an enormous carbon sink—each year it absorbs several billion tonnes of carbon. It has captured almost 30% of anthropogenic carbon emissions since the start of the industrial period, thereby significantly reducing the increase in the concentration of CO2 in the atmosphere. The oceans moderating impact on anthropogenic climate change comes at a cost: it warms up by absorbing heat and it acidifies by absorbing carbon. These changes in the fundamental physico-chemical properties of the ocean (warming, acidification) have repercussions on the functioning of ecosystems and on marine species by modifying their geographical distribution, their basic physiology, and their seasonal rhythms. Nevertheless, the ocean is also a source of potential solutions to mitigate climate change. Coastal ecosystems, mangroves, salt marshes, seagrass beds and macroalgae constitute what is known as “Blue Carbon”. By protecting and restoring these very productive ecosystems could significantly increase the Earth’s carbon storage capacity and reduce the rate of atmospheric CO2 increase in the atmosphere.
Despite significant advances, our understanding of the role of the ocean in climate change projections for the coming decades is still limited. What will be the evolution of the ocean carbon sink in the 21st century? What will be the impacts of ocean acidification on marine ecosystems? Similarly, the quantification of the potential role of “blue carbon” in mitigating climate change is still very incomplete. This quantification is mainly based on local terrain data that has been extrapolated to the entire globe. How can we improve our estimates of blue carbon?